找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 19th IAPR Internatio Nicolas Normand,Jeanpierre Guédon,Florent Autrusse Conference proceedings 2016

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:21:34 | 只看該作者
A Comparison of Some Methods for Direct 2D Reconstruction from Discrete Projected Viewsnverse for such transforms. We assemble a limited set of measurements and then apply the inversion to obtain a high-fidelity image of the original object. In this work, we compare the following direct inversion techniques for sets of discrete projections: Radon-i(inverse)Radon, a least squared error
32#
發(fā)表于 2025-3-27 01:15:46 | 只看該作者
33#
發(fā)表于 2025-3-27 06:59:40 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:30 | 只看該作者
Shape Classification According to LBP Persistence of Critical Pointseleton are determined first. The shape is described according to persistence of the local topology at these critical points over a range of scales. The local topology over scale-space is derived using the local binary pattern texture operator with varying radii. To visualise the descriptor, a new ty
35#
發(fā)表于 2025-3-27 17:20:20 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:06:54 | 只看該作者
Nicolas Normand,Jeanpierre Guédon,Florent Autrusse
38#
發(fā)表于 2025-3-28 02:56:07 | 只看該作者
A Tomographical Interpretation of a Sufficient Condition on ,-Graphical Sequencesoblem under a tomographical perspective by adapting an already known reconstruction algorithm that has been defined for regular .-uniform degree sequences to the proposed instances, providing efficiency to the sufficient condition. Furthermore, we extend the set of .-uniform degree sequences whose g
39#
發(fā)表于 2025-3-28 10:20:25 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:33 | 只看該作者
Conference proceedings 2016Nantes,France, in April 2016.?.The 32 revised full papers presented together with 2invited talks were carefully selected from 51 submissions. The papers areorganized in topical sections on combinatorial tools; discretization; discretetomography; discrete and combinatorial topology; shape descriptors
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
赤壁市| 芷江| 会同县| 津市市| 确山县| 应城市| 无锡市| 新竹市| 榆中县| 鲁山县| 耒阳市| 游戏| 新野县| 乌拉特后旗| 图木舒克市| 曲麻莱县| 昭苏县| 孟津县| 合作市| 义马市| 浪卡子县| 涪陵区| 秦皇岛市| 三台县| 石林| 明水县| 昆明市| 伽师县| 永春县| 西宁市| 镇江市| 雷波县| 佛坪县| 额济纳旗| 广东省| 岳阳市| 上思县| 白朗县| 金沙县| 四会市| 南丹县|