找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 16th IAPR Internatio Isabelle Debled-Rennesson,Eric Domenjoud,Philippe Conference proceedings 2011

[復(fù)制鏈接]
樓主: Boldfaced
61#
發(fā)表于 2025-4-1 02:20:47 | 只看該作者
Introduction to Digital Level Layersshow that even if we consider functions . of high degree, the computations on Digital Level Layers, for instance the computation of a DLL containing an input set of points, remain linear. It makes this notion suitable for applications, for instance to provide analytical characterizations of digital shapes.
62#
發(fā)表于 2025-4-1 08:02:46 | 只看該作者
Metric Bases for Polyhedral Gaugesstance, as well as in the digital plane with the city-block and chessboard distances. We investigate these concepts for polyhedral gauges, which generalize in the Euclidean space the chamfer norms in the digital space.
63#
發(fā)表于 2025-4-1 13:39:29 | 只看該作者
Isthmus-Based 6-Directional Parallel Thinning Algorithmscurve skeletons) or surface end points (for surface skeletons). In this paper we propose a new fast directional parallel thinning scheme, preserving isthmuses (a generalization of curve/surface interior points), and providing skeletons with low amount of noise. We also prove the topology preservation of our approach.
64#
發(fā)表于 2025-4-1 18:11:59 | 只看該作者
Quasi-Linear Transformations, Numeration Systems and Fractalsl results about QLTs. We will then point out relations between QLTs, numeration systems and fractals. These relations allow us to define new numeration systems, fractals associated with them and n-dimensional fractals. With help of some properties of the QLTs we can give the fractal dimension of these fractals.
65#
發(fā)表于 2025-4-1 19:49:16 | 只看該作者
66#
發(fā)表于 2025-4-2 00:55:07 | 只看該作者
67#
發(fā)表于 2025-4-2 05:19:50 | 只看該作者
Future of Supply Chain Managementes. We give few basic properties of this collection. Then, we present a theorem which shows the equivalence between this collection and the collection made of all simply contractible simplicial complexes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 岳西县| 枝江市| 古田县| 漳平市| 林口县| 永安市| 青河县| 清涧县| 新巴尔虎左旗| 达拉特旗| 承德市| 澄迈县| 密山市| 青神县| 富川| 南昌县| 连山| 吉安县| 娱乐| 郓城县| 盐亭县| 涿州市| 霍山县| 斗六市| 陵川县| 赣州市| 岑溪市| 马尔康县| 巩留县| 惠水县| 清远市| 香格里拉县| 微山县| 镶黄旗| 建湖县| 泉州市| 成安县| 兰坪| 广平县| 澄江县|