找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 8th International Co Gilles Bertrand,Michel Couprie,Laurent Perroton Conference proceedings 1999 Sp

[復(fù)制鏈接]
樓主: clot-buster
61#
發(fā)表于 2025-4-1 04:43:04 | 只看該作者
62#
發(fā)表于 2025-4-1 07:00:44 | 只看該作者
Supervision als Sinn- und Grenzreflexionimage processing and pattern recognition, because it shows what the picture resolution should be used in order to obtain a required precision in the parameter estimation from the digital data taken from the corresponded binary picture.
63#
發(fā)表于 2025-4-1 13:03:31 | 只看該作者
64#
發(fā)表于 2025-4-1 16:19:45 | 只看該作者
Graceful Planes and Thin Tunnel-Free Meshesd graceful lines to obtain as thin as possible triangular mesh discretization admitting an analytical description. The interiors of the triangles are portions of naive planes, while the sides are graceful lines
65#
發(fā)表于 2025-4-1 22:08:57 | 只看該作者
Local Configurations of Digital Hyperplanesntrolled by two arithmetical functions that we call .. and ... By using these two simple tools, we prove that the local configurations in a functional digital hyperplane only depends on its normal vector and that their number is less than the size of the chosen neighborhood.
66#
發(fā)表于 2025-4-2 01:50:38 | 只看該作者
67#
發(fā)表于 2025-4-2 04:21:59 | 只看該作者
Presentation of the Fundamental Group in Digital Surfacesencode a discrete group is to find a . of this group. In this paper, we define a presentation for the fundamental group of any subset of a digital surface. This presentation can be computed by an efficient algorithm.
68#
發(fā)表于 2025-4-2 09:22:24 | 只看該作者
69#
發(fā)表于 2025-4-2 12:18:56 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特后旗| 鄱阳县| 旬邑县| 汉沽区| 唐山市| 昭通市| 通海县| 潢川县| 榆社县| 越西县| 扬州市| 清水县| 龙海市| 柞水县| 扎赉特旗| 衡阳市| 秦皇岛市| 博乐市| 饶河县| 成都市| 阜新| 望江县| 安乡县| 紫阳县| 亳州市| 曲靖市| 桃园县| 泰和县| 许昌市| 临高县| 盐源县| 韶关市| 于田县| 南宫市| 乌拉特后旗| 怀化市| 罗定市| 林州市| 龙山县| 南京市| 金寨县|