找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 05:02:25 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:49 | 只看該作者
Structured Illumination Microscopyrs, is solved by the Gauss pivot. The problem investigated in this paper is very close to this classical question: we denote . the function of ?. defined by . and the question is now to determine if a given vector v ∈ ?. belongs to .. This problem can be easily seen as a sytem of inequalities and so
23#
發(fā)表于 2025-3-25 15:01:34 | 只看該作者
https://doi.org/10.1007/978-3-030-21691-7 when some known absorption is supposed. It is math-ematically interesting when the absorbed projection of a matrix element is the same as the absorbed projection of the next two consecutive el-ements together. We show that, in this special case, the non-uniquely determined matrices contain a certai
24#
發(fā)表于 2025-3-25 18:48:36 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:54 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:53 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:43 | 只看該作者
Matthew Ballard,Charles Doran,Eric Sharpeble for classi.cation or compression purposes. Theoretical approaches based on di.erential topology and geometry have been used for surface coding, for example Morse theory and Reeb graphs. To use these approaches in discrete geometry, it is necessary to adapt concepts developed for smooth manifolds
28#
發(fā)表于 2025-3-26 12:10:51 | 只看該作者
Type II Superstrings in Four Dimensionsundary can be retrieved by digitizing the smoothed one. To this end, we propose a representation of the boundary of a discrete volume that we call Euclidean net and which is a generalization to the three-dimensional space of Euclidean Path introduced by Braquelaire and Vialard [.]. Euclidean nets ca
29#
發(fā)表于 2025-3-26 15:56:34 | 只看該作者
30#
發(fā)表于 2025-3-26 18:52:13 | 只看該作者
Peter G. O. Freund,K. T. Mahanthappanning algorithm. The surface of an object composed of voxels is a seto f surfels (faces of voxels) which is the boundary between this object and its complementary. But this representation is not the classical one to visualize and to work on 3D objects, in frameworks like Computer Assisted Geometric
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平武县| 昭觉县| 富蕴县| 乐平市| 灌云县| 邛崃市| 石林| 五莲县| 宣汉县| 隆德县| 杭州市| 桦川县| 凤冈县| 美姑县| 阿坝县| 南充市| 开鲁县| 河池市| 夏邑县| 东海县| 和平县| 六安市| 万载县| 二连浩特市| 商南县| 横峰县| 苗栗县| 开封县| 晋城| 全州县| 卓资县| 周口市| 凌云县| 巍山| 柳河县| 稻城县| 会宁县| 呼和浩特市| 龙泉市| 浦北县| 获嘉县|