找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Symmetry; Dedicated to Károly Marston D. E. Conder,Antoine Deza,Asia Ivi? Weiss Conference proceedings 2018 Springer

[復制鏈接]
樓主: informed
61#
發(fā)表于 2025-4-1 01:53:37 | 只看該作者
,How to Distinguish a Super El Ni?o?,mmetric maniplexes, particularly those having maximal ‘rotational’ symmetry. This paper introduces an operation on polytopes and maniplexes which, in its simplest form, can be interpreted as twisting the connection between facets. This is first described in detail in dimension 4 and then generalized
62#
發(fā)表于 2025-4-1 09:16:26 | 只看該作者
https://doi.org/10.1007/978-1-4419-6035-1examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal exte
63#
發(fā)表于 2025-4-1 12:16:41 | 只看該作者
64#
發(fā)表于 2025-4-1 16:29:36 | 只看該作者
Super Sinne - Warum wir 32 davon habeneralize the classical . Desargues configuration and Danzer’s . configuration; moreover, their construction goes back to Cayley. We show that these configurations can be arranged in a triangular array which resembles the classical Pascal triangle also in the sense that it can be recursively generated
65#
發(fā)表于 2025-4-1 20:04:05 | 只看該作者
https://doi.org/10.1007/978-3-662-68496-2 elements can be characterized as .. An integer of norm 1 is a .. In a . of integers the units span a 1-, 2-, 4-, or 8-dimensional lattice, the points of which are the vertices of a regular or uniform Euclidean honeycomb. A . is a group of linear fractional transformations whose coefficients are int
66#
發(fā)表于 2025-4-2 01:28:48 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
从化市| 玉林市| 三原县| 南昌市| 年辖:市辖区| 南皮县| 东丰县| 霞浦县| 察雅县| 通化市| 灵川县| 舟山市| 临江市| 塔河县| 大理市| 娄烦县| 区。| 邹城市| 亚东县| 凌海市| 孝昌县| 县级市| 桐梓县| 洛川县| 仙游县| 遵义市| 浏阳市| 福泉市| 孟连| 交城县| 寿宁县| 襄城县| 承德县| 页游| 普安县| 青海省| 原平市| 宁津县| 桦川县| 陆丰市| 桦南县|