找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Symmetry; Dedicated to Károly Marston D. E. Conder,Antoine Deza,Asia Ivi? Weiss Conference proceedings 2018 Springer

[復(fù)制鏈接]
樓主: informed
41#
發(fā)表于 2025-3-28 16:25:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:43 | 只看該作者
Hexagonal Extensions of Toroidal Maps and Hypermaps,examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal extensions of the tetrahedron.
43#
發(fā)表于 2025-3-29 01:05:34 | 只看該作者
44#
發(fā)表于 2025-3-29 05:48:30 | 只看該作者
Sphere-of-Influence Graphs in Normed Spaces,eralization of results of Füredi and Loeb (Proc Am Math Soc 121(4):1063–1073, 1994 [.]) and Guibas et al. (Sphere-of-influence graphs in higher dimensions, Intuitive geometry [Szeged, 1991], 1994, pp. 131–137 [.]).
45#
發(fā)表于 2025-3-29 09:57:25 | 只看該作者
https://doi.org/10.1007/978-3-319-78434-2discrete geometry; symmetry groups; polytopes; combinatorics; linear optimization
46#
發(fā)表于 2025-3-29 14:41:45 | 只看該作者
47#
發(fā)表于 2025-3-29 18:50:00 | 只看該作者
48#
發(fā)表于 2025-3-29 23:04:27 | 只看該作者
49#
發(fā)表于 2025-3-30 00:47:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:33:20 | 只看該作者
Super Sinne - Warum wir 32 davon habenThis paper describes ways that certain regular honeycombs of non-finite type in .-dimensional hyperbolic space . for . and 5 can be inscribed in others, in particular showing that some can be inscribed properly in copies of themselves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临邑县| 澄城县| 德钦县| 扶沟县| 浙江省| 苍山县| 阿瓦提县| 莲花县| 张家界市| 潮州市| 加查县| 长沙县| 常宁市| 大同市| 区。| 宜良县| 钟山县| 青海省| 东阿县| 庐江县| 太保市| 依兰县| 安宁市| 南涧| 鄄城县| 宁强县| 资兴市| 赞皇县| 宁河县| 隆化县| 大理市| 杭锦旗| 久治县| 大新县| 溆浦县| 米泉市| 左贡县| 重庆市| 高阳县| 阳西县| 临西县|