找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Diversity and Dispersion Maximization; A Tutorial on Metahe Rafael Martí,Anna Martínez-Gavara Book 2023 The Editor(s) (if applicab

[復制鏈接]
樓主: grateful
41#
發(fā)表于 2025-3-28 15:01:34 | 只看該作者
Discrete Diversity and Dispersion Maximization978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
42#
發(fā)表于 2025-3-28 20:12:36 | 只看該作者
The Barents Euro-Arctic Councilally represent the optimal solutions of some diversity models when solving Euclidean instances. These representations help us to understand and differentiate the models and their area of applicability. In particular, we disclose which models are better suited for dispersion and which ones for representativeness.
43#
發(fā)表于 2025-3-28 23:03:43 | 只看該作者
44#
發(fā)表于 2025-3-29 04:32:18 | 只看該作者
1931-6828 as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener978-3-031-38312-0978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
45#
發(fā)表于 2025-3-29 11:19:29 | 只看該作者
46#
發(fā)表于 2025-3-29 14:32:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:07:59 | 只看該作者
https://doi.org/10.1007/978-1-349-14650-5easibility or local optimality, which were usually treated as barriers. The methods based on these principles constitute nowadays the area called adaptive memory programming. Over a wide range of problem settings, the strategic use of memory in these methods has proved to make dramatic differences i
48#
發(fā)表于 2025-3-29 19:47:58 | 只看該作者
Book 2023resented in each chapter, this book may be used in a master course, a doctoral seminar, or as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener
49#
發(fā)表于 2025-3-30 02:20:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:54:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永嘉县| 定结县| 凤城市| 崇左市| 根河市| 斗六市| 乌兰察布市| 虎林市| 乌审旗| 东安县| 乌鲁木齐县| 平利县| 乌兰察布市| 右玉县| 漳州市| 东至县| 文昌市| 纳雍县| 濮阳市| 贵港市| 宜良县| 宁河县| 和龙市| 临高县| 茂名市| 水城县| 青海省| 辛集市| 达日县| 杂多县| 兴仁县| 四会市| 高密市| 寿宁县| 威海市| 分宜县| 饶阳县| 千阳县| 揭阳市| 郯城县| 乌什县|