找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Diversity and Dispersion Maximization; A Tutorial on Metahe Rafael Martí,Anna Martínez-Gavara Book 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: grateful
41#
發(fā)表于 2025-3-28 15:01:34 | 只看該作者
Discrete Diversity and Dispersion Maximization978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
42#
發(fā)表于 2025-3-28 20:12:36 | 只看該作者
The Barents Euro-Arctic Councilally represent the optimal solutions of some diversity models when solving Euclidean instances. These representations help us to understand and differentiate the models and their area of applicability. In particular, we disclose which models are better suited for dispersion and which ones for representativeness.
43#
發(fā)表于 2025-3-28 23:03:43 | 只看該作者
44#
發(fā)表于 2025-3-29 04:32:18 | 只看該作者
1931-6828 as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener978-3-031-38312-0978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
45#
發(fā)表于 2025-3-29 11:19:29 | 只看該作者
46#
發(fā)表于 2025-3-29 14:32:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:07:59 | 只看該作者
https://doi.org/10.1007/978-1-349-14650-5easibility or local optimality, which were usually treated as barriers. The methods based on these principles constitute nowadays the area called adaptive memory programming. Over a wide range of problem settings, the strategic use of memory in these methods has proved to make dramatic differences i
48#
發(fā)表于 2025-3-29 19:47:58 | 只看該作者
Book 2023resented in each chapter, this book may be used in a master course, a doctoral seminar, or as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener
49#
發(fā)表于 2025-3-30 02:20:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:54:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁水县| 临湘市| 漠河县| 攀枝花市| 定结县| 新建县| 东明县| 蓝山县| 白河县| 阳朔县| 梅河口市| 屯留县| 满城县| 西充县| 容城县| 庆云县| 阜康市| 临武县| 屯门区| 江都市| 双峰县| 灵山县| 民权县| 东安县| 五河县| 乐都县| 彭泽县| 北川| 兴国县| 盐池县| 阜城县| 深圳市| 芜湖市| 峨山| 临桂县| 抚顺市| 威宁| 宁都县| 奇台县| 确山县| 新晃|