找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Differential Geometry; Alexander I. Bobenko,John M. Sullivan,Günter M. Zi Book 2008 Birkh?user Basel 2008 Minimal surface.compute

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:59:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:06:32 | 只看該作者
23#
發(fā)表于 2025-3-25 13:32:42 | 只看該作者
24#
發(fā)表于 2025-3-25 19:22:25 | 只看該作者
https://doi.org/10.1007/978-3-642-01270-9hat the complex curvature of a discrete space curve evolves with the discrete nonlinear Schr?dinger equation (NLSE) of Ablowitz and Ladik, when the curve evolves with the Hashimoto or smoke-ring flow. A doubly discrete Hashimoto flow is derived and it is shown that in this case the complex curvature
25#
發(fā)表于 2025-3-25 21:13:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:24:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:56:46 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:14 | 只看該作者
https://doi.org/10.1057/9781137296504chieved in the famous “Map Color Theorem” by Ringel et al. (1968). We present the nicest one of Ringel’s constructions, for the case . ≡ 7 mod 12, but also an alternative construction, essentially due to Heffter (1898), which easily and explicitly yields surfaces of genus . ~ 1/16 ....For . (polyhed
29#
發(fā)表于 2025-3-26 16:42:18 | 只看該作者
The Drill Support Tooling Module Projects out such a first-principles approach gives us quantities such as mean and Gaussian curvature integrals in the discrete setting and more generally, fully characterizes a certain class of possible measures. Consequently one can characterize all possible “ sensible” measurements in the discrete setti
30#
發(fā)表于 2025-3-26 19:49:36 | 只看該作者
https://doi.org/10.1007/978-94-009-1299-1note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3-space. In particular, we show that mean curvature vectors converge in the sense of distributions, bu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 01:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 武鸣县| 台东市| 离岛区| 巨野县| 开鲁县| 云和县| 仙桃市| 安塞县| 兴安盟| 于田县| 皮山县| 西峡县| 鄂托克前旗| 康马县| 宁蒗| 法库县| 吴川市| 胶南市| 景谷| 邹城市| 闽侯县| 克山县| 长顺县| 河曲县| 沂水县| 凉城县| 清流县| 织金县| 凤阳县| 霍城县| 星子县| 平罗县| 宁国市| 九龙城区| 府谷县| 石狮市| 托里县| 温宿县| 延边| 漳平市|