找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Differential Geometry; Alexander I. Bobenko,John M. Sullivan,Günter M. Zi Book 2008 Birkh?user Basel 2008 Minimal surface.compute

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:59:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:06:32 | 只看該作者
23#
發(fā)表于 2025-3-25 13:32:42 | 只看該作者
24#
發(fā)表于 2025-3-25 19:22:25 | 只看該作者
https://doi.org/10.1007/978-3-642-01270-9hat the complex curvature of a discrete space curve evolves with the discrete nonlinear Schr?dinger equation (NLSE) of Ablowitz and Ladik, when the curve evolves with the Hashimoto or smoke-ring flow. A doubly discrete Hashimoto flow is derived and it is shown that in this case the complex curvature
25#
發(fā)表于 2025-3-25 21:13:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:24:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:56:46 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:14 | 只看該作者
https://doi.org/10.1057/9781137296504chieved in the famous “Map Color Theorem” by Ringel et al. (1968). We present the nicest one of Ringel’s constructions, for the case . ≡ 7 mod 12, but also an alternative construction, essentially due to Heffter (1898), which easily and explicitly yields surfaces of genus . ~ 1/16 ....For . (polyhed
29#
發(fā)表于 2025-3-26 16:42:18 | 只看該作者
The Drill Support Tooling Module Projects out such a first-principles approach gives us quantities such as mean and Gaussian curvature integrals in the discrete setting and more generally, fully characterizes a certain class of possible measures. Consequently one can characterize all possible “ sensible” measurements in the discrete setti
30#
發(fā)表于 2025-3-26 19:49:36 | 只看該作者
https://doi.org/10.1007/978-94-009-1299-1note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3-space. In particular, we show that mean curvature vectors converge in the sense of distributions, bu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 03:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇庆市| 美姑县| 宁蒗| 栾川县| 达孜县| 固安县| 新蔡县| 拜泉县| 响水县| 繁峙县| 观塘区| 洪雅县| 华宁县| 临江市| 勃利县| 闽清县| 乌海市| 昭苏县| 阳山县| 阿荣旗| 施秉县| 丹阳市| 茂名市| 左云县| 区。| 滨海县| 大冶市| 衡东县| 阿巴嘎旗| 静宁县| 平远县| 宜兰市| 大埔县| 文昌市| 巴林左旗| 汨罗市| 板桥市| 平陆县| 阿巴嘎旗| 多伦县| 嫩江县|