找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrepancy of Signed Measures and Polynomial Approximation; Vladimir V. Andrievskii,Hans-Peter Blatt Book 2002 Springer Science+Business

[復(fù)制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 10:15:54 | 只看該作者
Book 2002with respect to the angular measure. In 1929 Bernstein [27] stated the following theorem. Let f be a positive continuous function on [-1, 1]; if almost all zeros of the polynomials of best 2 approximation to f (in a weighted L -norm) are outside of an open ellipse c with foci at -1 and 1, then f has
12#
發(fā)表于 2025-3-23 14:34:25 | 只看該作者
Praktische Verfahren und Rezepte,ce .. := {.: |.| = .} is a limit point of zeros of polynomials ..(.), . = 1, 2,... . Szeg? [170] substantially improved this result by showing that there is a subsequence .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharq
13#
發(fā)表于 2025-3-23 20:48:54 | 只看該作者
Discrepancy of Signed Measures and Polynomial Approximation
14#
發(fā)表于 2025-3-23 22:40:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:55:26 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:20 | 只看該作者
Discrepancy Theorems via One-Sided Bounds for Potentials,urve or arc .. The basic quantities involved have been the two terms . and . where .. ∈ int . is fixed if . is a curve. In Section 2.3 we have outlined that it is possible to restrict the essential quantities to the .. in the case of a Jordan arc. If . is a curve, we replace .. by the smaller .. whe
17#
發(fā)表于 2025-3-24 13:41:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:25:09 | 只看該作者
Applications of Discrepancy Theorems,sets . of ?. It is known that the counting measures for Fekete point sets converge to the equilibrium distribution of .. Furthermore, if . is a Jordan curve or arc, then this weak*-convergence can be estimated by discrepancy bounds. For analytic Jordan curves Pommerenke [144, 145] has proved sharp a
19#
發(fā)表于 2025-3-24 20:52:31 | 只看該作者
20#
發(fā)表于 2025-3-24 23:45:30 | 只看該作者
978-1-4419-3146-7Springer Science+Business Media New York 2002
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 高平市| 台北县| 阿拉善盟| 湛江市| 根河市| 阆中市| 广西| 甘孜县| 财经| 绵竹市| 城固县| 苗栗县| 恩平市| 密山市| 皮山县| 吴川市| 承德县| 嘉黎县| 舒城县| 浪卡子县| 万盛区| 清河县| 马尔康县| 邯郸市| 洛宁县| 喀喇| 漠河县| 陆川县| 游戏| 收藏| 竹溪县| 宜君县| 邯郸市| 广宗县| 长汀县| 准格尔旗| 三台县| 运城市| 民勤县| 张掖市|