找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discovery of Ill–Known Motifs in Time Series Data; Sahar Deppe Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
查看: 15657|回復: 42
樓主
發(fā)表于 2025-3-21 16:28:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Discovery of Ill–Known Motifs in Time Series Data
編輯Sahar Deppe
視頻videohttp://file.papertrans.cn/282/281069/281069.mp4
概述Delivers a comprehensive review of methods in motif discovery along with the research gaps in this domain.Covers mathematical theories as invariant and wavelet theory.Provides new directions for the d
叢書名稱Technologien für die intelligente Automation
圖書封面Titlebook: Discovery of Ill–Known Motifs in Time Series Data;  Sahar Deppe Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book includes a novel motif discovery for time series, KITE (.ill-Known motIf discovery in Time sE.ries data.), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE’s contribution to motif discovery, new avenues for the signal and image processing domains are explored and created. ?The core of KITE is an invariant representation method called .Analytic Complex Quad Tree Wavelet Packet transform .(ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes..
出版日期Book 2022
關鍵詞Time Series; Motif discovery; Wavelet transformation; Affine transformations; Shift-invariant transforma
版次1
doihttps://doi.org/10.1007/978-3-662-64215-3
isbn_softcover978-3-662-64214-6
isbn_ebook978-3-662-64215-3Series ISSN 2522-8579 Series E-ISSN 2522-8587
issn_series 2522-8579
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE
The information of publication is updating

書目名稱Discovery of Ill–Known Motifs in Time Series Data影響因子(影響力)




書目名稱Discovery of Ill–Known Motifs in Time Series Data影響因子(影響力)學科排名




書目名稱Discovery of Ill–Known Motifs in Time Series Data網(wǎng)絡公開度




書目名稱Discovery of Ill–Known Motifs in Time Series Data網(wǎng)絡公開度學科排名




書目名稱Discovery of Ill–Known Motifs in Time Series Data被引頻次




書目名稱Discovery of Ill–Known Motifs in Time Series Data被引頻次學科排名




書目名稱Discovery of Ill–Known Motifs in Time Series Data年度引用




書目名稱Discovery of Ill–Known Motifs in Time Series Data年度引用學科排名




書目名稱Discovery of Ill–Known Motifs in Time Series Data讀者反饋




書目名稱Discovery of Ill–Known Motifs in Time Series Data讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:36:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:24 | 只看該作者
地板
發(fā)表于 2025-3-22 08:07:50 | 只看該作者
2522-8579 variant and wavelet theory.Provides new directions for the d.This book includes a novel motif discovery for time series, KITE (.ill-Known motIf discovery in Time sE.ries data.), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and
5#
發(fā)表于 2025-3-22 11:12:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:39:31 | 只看該作者
7#
發(fā)表于 2025-3-22 18:45:19 | 只看該作者
R.C. Dalton,C. H?lscher,H.J. Spiers and extract knowledge from it is growing. This issue is addressed by tasks such as clustering, classification, query by content, anomaly detection, and motif discovery [BeR14,BLB.17,FaV17,AAJ.19,AlA20].
8#
發(fā)表于 2025-3-23 01:09:14 | 只看該作者
Book 2022avelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes..
9#
發(fā)表于 2025-3-23 01:49:21 | 只看該作者
10#
發(fā)表于 2025-3-23 07:17:02 | 只看該作者
Introduction,mount of data. According to IBM [IBM20], over 2.5 quintillion bytes of data are created every single day, obtained from different fields such as economics, medicine and epidemiology, industry and telecommunications, geographical and physical science [PfL18, ElB18, CTC.19, SGO20]. These data are main
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
洛宁县| 左贡县| 迁安市| 垣曲县| 抚宁县| 佛教| 彰化县| 泰州市| 泸水县| 连山| 理塘县| 博兴县| 永年县| 久治县| 秭归县| 锦州市| 仁寿县| 台前县| 高雄县| 阳曲县| 大英县| 友谊县| 育儿| 哈尔滨市| 平果县| 商都县| 许昌市| 壤塘县| 平昌县| 城固县| 安平县| 湾仔区| 阳信县| 兰溪市| 得荣县| 太白县| 海伦市| 尤溪县| 辉县市| 贞丰县| 邯郸市|