找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discontinuous Systems; Lyapunov Analysis an Yury V. Orlov Book 2009 Springer-Verlag London 2009 Lyapunov Analysis.algorithm.algorithms.calc

[復制鏈接]
樓主: 要旨
31#
發(fā)表于 2025-3-26 23:41:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:33:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:44 | 只看該作者
https://doi.org/10.1007/978-3-658-23458-4 100, 153]. Extending this result to switched systems has required proceeding differently [128, 169] because a smooth homogeneous Lyapunov function, whose existence was proven in [195] for continuous asymptotically stable homogeneous vector fields, can no longer be brought into play. The aforementio
34#
發(fā)表于 2025-3-27 12:20:14 | 只看該作者
https://doi.org/10.1007/978-3-322-83562-8mics. The standard sliding mode control is synthesized to steer the system to a submanifold in finite time, after that the system stays in this submanifold forever. Typically [227], there are several switching points as one coordinate after the other hits the discontinuity manifold, and in order to
35#
發(fā)表于 2025-3-27 16:39:27 | 只看該作者
https://doi.org/10.1007/978-3-8349-9114-0the ?.-norm of a linear control system is viewed as a differential game of two antagonistic persons and a solution of the problem relates to certain solutions of the Riccati equations arising in linear quadratic differential game theory (see, e.g., [18, 62] for details).
36#
發(fā)表于 2025-3-27 19:15:32 | 只看該作者
37#
發(fā)表于 2025-3-27 23:18:57 | 只看該作者
Steuern und Soziale Sicherung in Deutschlandwhose unperturbed dynamics are linear. Being inspired from [179], the present synthesis is based on the delay-dependent stability criterion, which is derived within the framework developed in Sect. 3.8. The controller constructed proves to be robust against sufficiently small delay variations and we
38#
發(fā)表于 2025-3-28 02:36:44 | 只看該作者
Asymptotic Stabilization of Minimum-phase Semilinear Systems
39#
發(fā)表于 2025-3-28 09:28:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:40:11 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 01:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海安县| 新巴尔虎左旗| 织金县| 呼图壁县| 鸡东县| 平阴县| 耒阳市| 竹北市| 河间市| 周口市| 聊城市| 保定市| 柳林县| 新邵县| 衡山县| 西宁市| 泸定县| 奉贤区| 来安县| 广宗县| 岗巴县| 汝城县| 彭阳县| 海丰县| 邹平县| 峨眉山市| 古丈县| 尖扎县| 嫩江县| 卓资县| 东海县| 耒阳市| 新平| 湘阴县| 楚雄市| 大宁县| 保山市| 库尔勒市| 东乡县| 时尚| 兰溪市|