找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct and Inverse Sturm-Liouville Problems; A Method of Solution Vladislav V. Kravchenko Book 2020 The Editor(s) (if applicable) and The A

[復制鏈接]
樓主: 歸納
31#
發(fā)表于 2025-3-27 00:40:19 | 只看該作者
32#
發(fā)表于 2025-3-27 04:30:27 | 只看該作者
Solution of the Inverse Quantum Scattering Problem on the Half-LineHere we consider the inverse problem formulated in Chap. .. Given the scattering data (.), find the corresponding short-range potential ..
33#
發(fā)表于 2025-3-27 07:17:12 | 只看該作者
34#
發(fā)表于 2025-3-27 11:24:46 | 只看該作者
Quantum Scattering Problem on the Half-Linealled the .and the quotient . is traditionally called the scattering matrix, or simply .(see, e.g., [.]). Notice that due to (.) we have that . Instead of the initial condition (.), consider the condition
35#
發(fā)表于 2025-3-27 16:37:05 | 只看該作者
36#
發(fā)表于 2025-3-27 19:12:30 | 只看該作者
The Inverse Sturm–Liouville Problem on a Finite Intervall numbers . and . such that ..?< .. for .??0, and the relations (.) are valid. Find the real-valued potential .(.) and the real numbers . and ., such that . is the spectrum of the Sturm–Liouville problem . and .., .?=?0, 1, … are the corresponding norming constants.
37#
發(fā)表于 2025-3-28 00:26:57 | 只看該作者
https://doi.org/10.1007/978-3-030-47849-0scattering problem; inverse scattering problem; spectral parameter power series; Neumann series of Bess
38#
發(fā)表于 2025-3-28 05:50:52 | 只看該作者
978-3-030-47848-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
39#
發(fā)表于 2025-3-28 08:25:39 | 只看該作者
Vladislav V. KravchenkoExplains in detail direct and simple methods for solving direct and inverse Sturm-Liouville and scattering problems on finite and infinite intervals.Includes a brief introduction to the notion and pro
40#
發(fā)表于 2025-3-28 11:13:46 | 只看該作者
Frontiers in Mathematicshttp://image.papertrans.cn/e/image/280638.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
锡林浩特市| 台南市| 林州市| 石林| 吴忠市| 东港市| 淳安县| 桦川县| 石狮市| 桑日县| 峡江县| 和静县| 闸北区| 灵川县| 汤阴县| 福清市| 北碚区| 毕节市| 碌曲县| 介休市| 潼南县| 长顺县| 沾益县| 应用必备| 乐平市| 富平县| 昭苏县| 都匀市| 洛南县| 富平县| 威海市| 望江县| 牡丹江市| 昔阳县| 慈溪市| 静乐县| 尚志市| 抚顺县| 宁安市| 岢岚县| 涞源县|