找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:11:15 | 只看該作者
The Boltzmann Equation as a Physical and Mathematical Model,analytically or numerically) with the Boltzmann equation. The peculiarities of formulation of mathematical problems for the kinetic equation and some types of the boundary conditions are considered. The physical peculiarities of the kinetic Boltzmann equation (in particular, the important property of irreversibility) are also discussed.
12#
發(fā)表于 2025-3-23 17:37:59 | 只看該作者
13#
發(fā)表于 2025-3-23 19:52:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:14 | 只看該作者
Deterministic (Regular) Method for Solving the Boltzmann Equation,g the right-hand side of the Boltzmann equation are developed in recent years [.–.]. Such numerical schemes are attractive due to the simple structure of terms that approximate the collision integrals, good perspectives for paralleling, a clear way for estimating numerical errors, etc.
17#
發(fā)表于 2025-3-24 12:52:30 | 只看該作者
Parallel Algorithms for the Kinetic Equation,ears, our description of state of art in this field will be out of date as soon as it is published. Nevertheless, we can note the main features of schemes for directly solving the Boltzmann equation which are used for parallel implementation.
18#
發(fā)表于 2025-3-24 15:22:02 | 只看該作者
19#
發(fā)表于 2025-3-24 21:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湛江市| 盐源县| 密山市| 秀山| 温泉县| 溆浦县| 德州市| 大渡口区| 洛浦县| 福州市| 鹤峰县| 钟山县| 平原县| 彰化市| 汪清县| 行唐县| 筠连县| 东宁县| 饶阳县| 宝鸡市| 台山市| 瑞金市| 嘉鱼县| 黑河市| 罗平县| 肇庆市| 库尔勒市| 日喀则市| 鹤峰县| 吉木乃县| 社旗县| 务川| 望奎县| 渝北区| 昌图县| 庆城县| 新丰县| 贡嘎县| 武乡县| 永春县| 夏河县|