找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; Theory and Algorithm István Gaál Book 2019Latest edition Springer Nature Switzerland AG 201

[復(fù)制鏈接]
樓主: Magnanimous
11#
發(fā)表于 2025-3-23 10:11:39 | 只看該作者
Pure Fields,ction of the integral basis in . allows us to give conditions on the monogenity of .. We follow the presentation of Gaál and Remete (J Number Theory 173:129–146, 2017). We consider pure cubic, quartic, sextic, and octic fields in detail.
12#
發(fā)表于 2025-3-23 17:49:12 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:18 | 只看該作者
Quartic Relative Extensions, in the extension field by using the relative power integral bases..In Sect. . we describe a relative analogue of the method of Sect. . to calculate relative power integral bases in relative quartic extensions. Applying this method in Sect. . we consider power integral bases in octic fields with qua
14#
發(fā)表于 2025-3-23 22:50:41 | 只看該作者
Tables,ons. Recall that several examples are also given in the corresponding sections..In Sects. . and . we list the solutions of binomial Thue equations and binomial relative Thue equations, respectively..We made extensive computations in cubic, quartic, and sextic fields..The table of Sect. . gives all g
15#
發(fā)表于 2025-3-24 02:38:52 | 只看該作者
D. J. Caballero-Garcia,A. Jimenez-MarrufoThe resolution of index form equations in cubic and quartic number fields is based on solving Thue equations. We give here an overview of the methods for solving these equations. We also consider binomial Thue equations that we shall apply in the sequel in pure quartic fields (Sect. .).
16#
發(fā)表于 2025-3-24 06:31:06 | 只看該作者
17#
發(fā)表于 2025-3-24 12:38:30 | 只看該作者
Thue Equations,The resolution of index form equations in cubic and quartic number fields is based on solving Thue equations. We give here an overview of the methods for solving these equations. We also consider binomial Thue equations that we shall apply in the sequel in pure quartic fields (Sect. .).
18#
發(fā)表于 2025-3-24 17:27:09 | 只看該作者
19#
發(fā)表于 2025-3-24 21:45:59 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大余县| 靖宇县| 六盘水市| 嫩江县| 镇安县| 尚义县| 宜良县| 湘潭县| 新干县| 淳化县| 桦南县| 阳江市| 清水河县| 西林县| 英超| 郓城县| 玛曲县| 信阳市| 准格尔旗| 株洲市| 库车县| 宁国市| 班戈县| 科技| 嘉荫县| 蒙阴县| 安陆市| 罗定市| 家居| 平凉市| 合阳县| 连山| 太原市| 台中县| 乐东| 繁峙县| 黎城县| 刚察县| 麦盖提县| 安吉县| 怀宁县|