找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation on Linear Algebraic Groups; Transcendence Proper Michel Waldschmidt Book 2000 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
樓主: hierarchy
21#
發(fā)表于 2025-3-25 05:04:57 | 只看該作者
M. Jansen,M. Judas,J. Saborowskire algebraic numbers . such that |.|is small but not zero. One deduces that numbers ..,..., .. belonging to a field of transcendence degree 1 admit good simultaneous approximations by algebraic numbers ..,..., .., where the quality of the approximation, namely the number max.... |.. ? ..|, is controlled in terms of the degree [?(..,..., ..): ?].
22#
發(fā)表于 2025-3-25 09:53:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:20:37 | 只看該作者
24#
發(fā)表于 2025-3-25 16:51:59 | 只看該作者
https://doi.org/10.1007/978-3-662-11569-5Algebra; Diophantine approximation; Exponential Functions; Linear Algebraic groups; Measures of Independ
25#
發(fā)表于 2025-3-25 19:59:42 | 只看該作者
26#
發(fā)表于 2025-3-26 03:44:58 | 只看該作者
Michel WaldschmidtIncludes supplementary material:
27#
發(fā)表于 2025-3-26 04:17:25 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/e/image/280537.jpg
28#
發(fā)表于 2025-3-26 09:50:08 | 只看該作者
Design Principles for Micro Modelsas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
29#
發(fā)表于 2025-3-26 14:44:21 | 只看該作者
Robert Tanton,Kimberley L. Edwardsle. Our aim is to prove the theorems of Hermite-Lindemann and Gel’ fond-Schneider by means of the alternants or interpolation determinants of M. Laurent [Lau 1989]. The real case of these two theorems (§§ 2.3 and 2.4) is easier, thanks to an estimate, due to G. Pólya (Lemma 2.2), for the number of r
30#
發(fā)表于 2025-3-26 19:56:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 句容市| 德清县| 颍上县| 吉木萨尔县| 略阳县| 眉山市| 舞阳县| 博罗县| 安新县| 蛟河市| 化州市| 龙川县| 宜城市| 渑池县| 且末县| 东城区| 三台县| 赤水市| 容城县| 当涂县| 洛南县| 成都市| 武乡县| 海门市| 隆化县| 宁国市| 浦北县| 灵山县| 天峻县| 鹿邑县| 武冈市| 谷城县| 湖口县| 台前县| 和田县| 滁州市| 宁都县| 吉林省| 家居| 子长县|