找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation and Dirichlet Series; Hervé Queffélec,Martine Queffélec Book 20131st edition Hindustan Book Agency (India) 2013

[復(fù)制鏈接]
查看: 44702|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:49:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Diophantine Approximation and Dirichlet Series
編輯Hervé Queffélec,Martine Queffélec
視頻videohttp://file.papertrans.cn/281/280535/280535.mp4
圖書封面Titlebook: Diophantine Approximation and Dirichlet Series;  Hervé Queffélec,Martine Queffélec Book 20131st edition Hindustan Book Agency (India) 2013
描述This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which
出版日期Book 20131st edition
版次1
doihttps://doi.org/10.1007/978-93-86279-61-3
isbn_ebook978-93-86279-61-3
copyrightHindustan Book Agency (India) 2013
The information of publication is updating

書目名稱Diophantine Approximation and Dirichlet Series影響因子(影響力)




書目名稱Diophantine Approximation and Dirichlet Series影響因子(影響力)學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series網(wǎng)絡(luò)公開度




書目名稱Diophantine Approximation and Dirichlet Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series被引頻次




書目名稱Diophantine Approximation and Dirichlet Series被引頻次學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series年度引用




書目名稱Diophantine Approximation and Dirichlet Series年度引用學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series讀者反饋




書目名稱Diophantine Approximation and Dirichlet Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:04 | 只看該作者
地板
發(fā)表于 2025-3-22 06:48:30 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:00 | 只看該作者
6#
發(fā)表于 2025-3-22 12:52:38 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:01 | 只看該作者
https://doi.org/10.1007/978-3-031-55008-9robabilistic methods have a great flexibility, and are nearly compulsory in some questions, even if the initial proof of the Bohnenblust-Hille theorem, to be proved in the last section, made no use of such methods.
8#
發(fā)表于 2025-3-23 00:31:12 | 只看該作者
9#
發(fā)表于 2025-3-23 02:26:18 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:47 | 只看該作者
Probabilistic methods for Dirichlet series,h is fairly well-known in harmonic analysis, but will have a specific aspect, due to the Bohr point of view on Dirichlet series. We tried to keep the presentation as self-contained as possible, since the subject may be not completely familiar to some number-theoretists. Let us emphasize that those p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂阳县| 醴陵市| 武胜县| 达日县| 巴中市| 祁阳县| 怀仁县| 九龙城区| 扶沟县| 旬阳县| 金川县| 邵武市| 昌黎县| 大安市| 南溪县| 喀喇沁旗| 福州市| 克拉玛依市| 安康市| 明水县| 德昌县| 从江县| 那曲县| 林西县| 甘谷县| 卓资县| 扎赉特旗| 乐山市| 巴东县| 雷山县| 屏边| 南宫市| 启东市| 衡阳县| 灵宝市| 莱州市| 固始县| 武平县| 乌审旗| 清涧县| 重庆市|