找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation and Dirichlet Series; Hervé Queffélec,Martine Queffélec Book 2020Latest edition Hindustan Book Agency 2020 and S

[復(fù)制鏈接]
查看: 55711|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:58:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Diophantine Approximation and Dirichlet Series
編輯Hervé Queffélec,Martine Queffélec
視頻videohttp://file.papertrans.cn/281/280534/280534.mp4
概述Includes a new chapter on the study of composition operators on the Hardy spaces.Combines different aspects of Dirichlet series in a way not presented before in other publications.Constructs rigorous
叢書名稱Texts and Readings in Mathematics
圖書封面Titlebook: Diophantine Approximation and Dirichlet Series;  Hervé Queffélec,Martine Queffélec Book 2020Latest edition Hindustan Book Agency 2020 and S
描述The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust–Hille theorem, Hardy–Dirichlet spaces, composition operators of the Hardy–Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis,number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers...?..?..?..?.
出版日期Book 2020Latest edition
關(guān)鍵詞Diophantine approximation; Gauss; Dirichlet series; Bohr point; Hardy-Dirichlet spaces; Bagchi-Voronin th
版次2
doihttps://doi.org/10.1007/978-981-15-9351-2
isbn_softcover978-981-15-9669-8
isbn_ebook978-981-15-9351-2Series ISSN 2366-8717 Series E-ISSN 2366-8725
issn_series 2366-8717
copyrightHindustan Book Agency 2020 and Springer Nature Singapore Pte Ltd 2020
The information of publication is updating

書目名稱Diophantine Approximation and Dirichlet Series影響因子(影響力)




書目名稱Diophantine Approximation and Dirichlet Series影響因子(影響力)學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series網(wǎng)絡(luò)公開度




書目名稱Diophantine Approximation and Dirichlet Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series被引頻次




書目名稱Diophantine Approximation and Dirichlet Series被引頻次學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series年度引用




書目名稱Diophantine Approximation and Dirichlet Series年度引用學(xué)科排名




書目名稱Diophantine Approximation and Dirichlet Series讀者反饋




書目名稱Diophantine Approximation and Dirichlet Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:52 | 只看該作者
地板
發(fā)表于 2025-3-22 06:34:35 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:24 | 只看該作者
https://doi.org/10.1007/978-3-319-58039-5Throughout this chapter, [.] denotes the integral part and . the fractional part of the real number . so that .; moreover we shall use the notation . for the closest distance of . to an element of ..
6#
發(fā)表于 2025-3-22 15:28:25 | 只看該作者
7#
發(fā)表于 2025-3-22 20:57:19 | 只看該作者
8#
發(fā)表于 2025-3-22 23:24:46 | 只看該作者
https://doi.org/10.1007/978-3-319-23374-1The forthcoming spaces .of Dirichlet series ., analogous to the familiar Hardy spaces . on the unit disk, have been successfully introduced to study completeness problems in Hilbert spaces [.], first for .. Later on, the general case was considered in [.] for the study of composition operators.
9#
發(fā)表于 2025-3-23 04:41:59 | 只看該作者
Franz-Benjamin Mocnik,Andrew U. FrankIn this?introductory section, we begin by fixing some notations, recalling some basic facts on Dirichlet characters?[., Chap.?5] and presenting the main results to be discussed. The techniques (Hilbertian spaces of analytic functions, ergodic theorems) are a good illustration of the material introduced in the previous chapters.
10#
發(fā)表于 2025-3-23 07:07:18 | 只看該作者
Richard Dapoigny,Patrick BarlatierThe general framework for composition operators acting on a Banach space . of functions analytic on a domain . of . is the following: we always assume that . is continuously embedded in the Fréchet space ., so that the point evaluations . are continuous linear forms on . for each ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 10:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍林郭勒市| 双城市| 济源市| 贵港市| 海安县| 东城区| 桂林市| 江山市| 会同县| 民权县| 苍山县| 中宁县| 湟源县| 铅山县| 奎屯市| 太康县| 荆门市| 鄄城县| 榕江县| 岱山县| 龙门县| 张家口市| 团风县| 濮阳县| 鄂温| 湾仔区| 阜南县| 康马县| 壶关县| 新化县| 炉霍县| 南皮县| 武川县| 雷波县| 天等县| 望奎县| 焦作市| 利津县| 文昌市| 平远县| 信宜市|