找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Wolfgang M. Schmidt Book 1980 Springer-Verlag Berlin Heidelberg 1980 Diophantine approximation.Diophantische Ap

[復(fù)制鏈接]
樓主: Callow
11#
發(fā)表于 2025-3-23 10:13:18 | 只看該作者
Approximation to Irrational Numbers by Rationals,Given a real number ., let [.], the . of ., denote the greatest integer ≤ ., and let {.} = . ? [.]. Then {.} is the . of ., and satisfies 0 ≤ {.} < 1. Also, let ‖.‖ denote the distance from . to the nearest integer. Then always 0 ≤ ‖.‖ ≤ 1/2.
12#
發(fā)表于 2025-3-23 15:17:32 | 只看該作者
Simultaneous Approximation,...,...,... n . Q > 1 .. . q,p.,...,P..
13#
發(fā)表于 2025-3-23 20:50:39 | 只看該作者
,Roth’s Theorem, . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..
14#
發(fā)表于 2025-3-23 23:10:01 | 只看該作者
Approximation By Algebraic Numbers,In the first chapters we studied approximation to real numbers by rationals. We now take up approximation to real numbers . algebraic numbers. This is quite different from the questions e.g. considered in Chapter V on approximation . algebraic numbers by rationals.
15#
發(fā)表于 2025-3-24 03:44:07 | 只看該作者
16#
發(fā)表于 2025-3-24 06:30:56 | 只看該作者
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ? B. of length ?(W.) = α?(B.). Then Black picks a compact interval B. ? W. of length ?(B.) = β?(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.
17#
發(fā)表于 2025-3-24 12:44:36 | 只看該作者
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)
18#
發(fā)表于 2025-3-24 18:40:39 | 只看該作者
Complex Landscapes of Spatial Interactionmber field generated by ..,...,.. and let 1,..,...,..,...,.. be a basis of this field. We saw in Theorem 4A of Chapter II that ..,...,.. are badly approximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,..
19#
發(fā)表于 2025-3-24 20:36:13 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:05 | 只看該作者
https://doi.org/10.1007/978-3-540-38645-2Diophantine approximation; Diophantische Approximation; Factor; Microsoft Access; Volume; algebra; approxi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
壤塘县| 阿拉善右旗| 益阳市| 石嘴山市| 宁陵县| 德钦县| 济源市| 台安县| 岚皋县| 巩义市| 石嘴山市| 惠东县| 甘谷县| 平塘县| 资阳市| 光山县| 新丰县| 闻喜县| 博白县| 靖西县| 江北区| 澜沧| 嘉荫县| 内丘县| 双鸭山市| 洛川县| 柘荣县| 南川市| 小金县| 黔江区| 赤水市| 双桥区| 大渡口区| 栾城县| 建阳市| 隆安县| 梁平县| 彭山县| 西吉县| 台中县| 达拉特旗|