找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension Theory; A Selection of Theor Michael G. Charalambous Book 2019 Springer Nature Switzerland AG 2019 covering dimension.inductive d

[復(fù)制鏈接]
樓主: 冰凍
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:17 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:14 | 只看該作者
Wolfgang Stroebe,Klaus Jonas,Miles Hewstoneiven ., we present a Tychonoff space . which is the union of two zero subspaces .., .. such that dim...?= dim...?=?0 while dim..?=?.. We also construct Tychonoff spaces .? with dim..?=?0 that contain zero subspaces . with dim.. as large as we wish, showing the failure of the subset theorem for dim. in a strong form.
14#
發(fā)表于 2025-3-24 00:42:24 | 只看該作者
Theorien und Modelle der Paarbeziehungany locally finite (respectively, discrete) collections.. is called . if every open cover of . has a locally finite open refinement. The proof that we give of the following fundamental result of Stone is due to Mary Ellen Rudin.
15#
發(fā)表于 2025-3-24 05:06:09 | 只看該作者
Zum Gegenstand der Sozialpsychologie and published in full detail in Roy (Trans Am Math Soc 134:117–132, 1968), is generally considered to be of forbidding complexity. In this chapter we present Kulesza’s much simpler metrizable space . with . and ., published in his paper Kulesza (Topol Appl 35:109–120, 1990) of 1990.
16#
發(fā)表于 2025-3-24 09:04:33 | 只看該作者
Book 2019e emphasis on the negative results for more general spaces, presenting a readable account of numerous counterexamples to well-known conjectures that have not been discussed in existing books. Moreover, it includes three new general methods for constructing spaces: Mrowka‘s psi-spaces, van Douwen‘s t
17#
發(fā)表于 2025-3-24 13:52:55 | 只看該作者
The Dimension of Euclidean Spaces, to Morita and Smirnov, who generalized the result of Alexandroff for the case of compact Hausdorff spaces. From this inequality, the countable sum theorem for . and the Urysohn inequality for ., it will follow that . and ..
18#
發(fā)表于 2025-3-24 16:16:47 | 只看該作者
Connected Components and Dimension,∈?., is the union of all connected subspaces of . that contain .. The intersection of all clopen sets of . that contain ., denoted here by ., is called the . of .. If . for every .?∈?., . is called .. If . for every .?∈?., . is called .. Note that both . and . are closed subsets of . and . is connected.
19#
發(fā)表于 2025-3-24 22:32:17 | 只看該作者
Universal Spaces for Separable Metric Spaces of Dimension at Most ,,. space ., which consists of all points of . that have at most . rational coordinates, is a universal space for the class of all separable metric spaces of covering dimension at most .. We first need some preliminary results.
20#
發(fā)表于 2025-3-25 02:09:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成都市| 普安县| 新巴尔虎右旗| 洞口县| 安达市| 汶川县| 南郑县| 郓城县| 保康县| 平顶山市| 淮阳县| 克山县| 收藏| 毕节市| 黑龙江省| 乌苏市| 华容县| 内丘县| 简阳市| 宜州市| 蒙阴县| 泰和县| 类乌齐县| 茶陵县| 清河县| 岑溪市| 房产| 林州市| 黎平县| 冀州市| 安溪县| 崇左市| 景宁| 永年县| 平安县| 库伦旗| 民县| 上高县| 栾川县| 休宁县| 新干县|