找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Watermarking for Machine Learning Model; Techniques, Protocol Lixin Fan,Chee Seng Chan,Qiang Yang Book 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 大腦
31#
發(fā)表于 2025-3-26 21:27:04 | 只看該作者
Protecting Intellectual Property of Machine Learning Models via Fingerprinting the Classification Bos such that it does not need to train its own model, which requires a large amount of resources. Therefore, it becomes an urgent problem how to distinguish such compromise of IP. Watermarking has been widely adopted as a solution in the literature. However, watermarking requires modification of the
32#
發(fā)表于 2025-3-27 03:49:41 | 只看該作者
33#
發(fā)表于 2025-3-27 06:38:09 | 只看該作者
Watermarks for Deep Reinforcement Learninging models, various watermarking approaches have been proposed. However, considering the complexity and stochasticity of reinforcement learning tasks, we cannot apply existing watermarking techniques for deep learning models to the deep reinforcement learning scenario directly. Existing watermarking
34#
發(fā)表于 2025-3-27 09:57:08 | 只看該作者
Ownership Protection for Image Captioning Modelster, we demonstrate that image captioning tasks cannot be adequately protected by the present digital watermarking architecture, which are generally considered as one of the most difficult AI challenges. To safeguard the image captioning model, we propose two distinct embedding strategies in the rec
35#
發(fā)表于 2025-3-27 17:12:06 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:27 | 只看該作者
FedIPR: Ownership Verification for Federated Deep Neural Network Modelsbution, and free-riding threat the collaboratively built models in federated learning. To address IP infringement issues, in this chapter, we introduce a novel deep neural network ownership verification framework for secure federated learning that allows each client to embed and extract private wate
37#
發(fā)表于 2025-3-28 00:30:16 | 只看該作者
Model Auditing for Data Intellectual Propertye the model developer may illegally misuse or steal other party’s private data for training. To determine the data ownership from a trained deep neural network model, in this chapter, we propose a deep neural network auditing scheme that allows the auditor to trace illegal data usage from a trained
38#
發(fā)表于 2025-3-28 04:06:36 | 只看該作者
Lixin Fan,Chee Seng Chan,Qiang YangThe first book to address the use of digital watermarking for verifying machine learning model ownerships.Presents essential protocols, methodologies and techniques for protecting machine learning mod
39#
發(fā)表于 2025-3-28 08:29:44 | 只看該作者
40#
發(fā)表于 2025-3-28 11:27:20 | 只看該作者
https://doi.org/10.1007/978-981-19-7554-7Machine learning model protection; deep learning model protection; model ownerhsip verification; model
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 08:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉中市| 白山市| 梓潼县| 浮山县| 米易县| 水富县| 镶黄旗| 肇州县| 重庆市| 特克斯县| 涿鹿县| 彰化县| 革吉县| 镇原县| 孟州市| 阳曲县| 宣化县| 鄂州市| 阿拉善左旗| 临朐县| 克什克腾旗| 巍山| 江山市| 岑溪市| 伊吾县| 龙口市| 黔江区| 潞城市| 湖北省| 聂拉木县| 游戏| 松溪县| 马山县| 伊宁县| 滦平县| 阿克陶县| 大城县| 鄂伦春自治旗| 河北省| 开鲁县| 开原市|