找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Watermarking for Machine Learning Model; Techniques, Protocol Lixin Fan,Chee Seng Chan,Qiang Yang Book 2023 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 55628|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:41:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Digital Watermarking for Machine Learning Model
副標(biāo)題Techniques, Protocol
編輯Lixin Fan,Chee Seng Chan,Qiang Yang
視頻videohttp://file.papertrans.cn/280/279897/279897.mp4
概述The first book to address the use of digital watermarking for verifying machine learning model ownerships.Presents essential protocols, methodologies and techniques for protecting machine learning mod
圖書封面Titlebook: Digital Watermarking for Machine Learning Model; Techniques, Protocol Lixin Fan,Chee Seng Chan,Qiang Yang Book 2023 The Editor(s) (if appli
描述.Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR).? Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model’s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts.? In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.?? ..This book covers the motivations, fundamentals, techniques and protocols for protecting M
出版日期Book 2023
關(guān)鍵詞Machine learning model protection; deep learning model protection; model ownerhsip verification; model
版次1
doihttps://doi.org/10.1007/978-981-19-7554-7
isbn_softcover978-981-19-7556-1
isbn_ebook978-981-19-7554-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Digital Watermarking for Machine Learning Model影響因子(影響力)




書目名稱Digital Watermarking for Machine Learning Model影響因子(影響力)學(xué)科排名




書目名稱Digital Watermarking for Machine Learning Model網(wǎng)絡(luò)公開度




書目名稱Digital Watermarking for Machine Learning Model網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Digital Watermarking for Machine Learning Model被引頻次




書目名稱Digital Watermarking for Machine Learning Model被引頻次學(xué)科排名




書目名稱Digital Watermarking for Machine Learning Model年度引用




書目名稱Digital Watermarking for Machine Learning Model年度引用學(xué)科排名




書目名稱Digital Watermarking for Machine Learning Model讀者反饋




書目名稱Digital Watermarking for Machine Learning Model讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:29 | 只看該作者
Ownership Verification Protocols for Deep Neural Network Watermarkschemes, formulates several additional requirements regarding ownership proof under elementary protocols, and puts forward the necessity of analyzing and regulating the ownership verification procedure.
板凳
發(fā)表于 2025-3-22 03:55:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:47:12 | 只看該作者
Protecting Intellectual Property of Machine Learning Models via Fingerprinting the Classification Bo which are used to fingerprint the model. Another model is likely to be a pirated version of the owner’s model if they have the same predictions for most fingerprinting data points. The key difference between fingerprinting and watermarking is that fingerprinting . fingerprint that characterizes the
5#
發(fā)表于 2025-3-22 11:31:06 | 只看該作者
6#
發(fā)表于 2025-3-22 16:41:48 | 只看該作者
Protecting Recurrent Neural Network by Embedding Keyss to train RNN models in a specific way such that when an invalid or forged key is presented, the performance of the embedded RNN models will be .. Having said that, the key gate was inspired by the nature of RNN model, to govern the flow of hidden state and designed in such a way that no additional
7#
發(fā)表于 2025-3-22 19:02:49 | 只看該作者
Model Auditing for Data Intellectual Propertyata owner cannot manage and thus cannot provide meaningful data ownership resolution. In this chapter, we rigorously present the model auditing problem for data ownership and open a new revenue in this area of research.
8#
發(fā)表于 2025-3-22 22:22:32 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:59 | 只看該作者
https://doi.org/10.1057/9781137006509ermine whether a suspicious model is stolen from the victim, based on model gradients. The final ownership verification is judged by hypothesis test. Extensive experiments on CIFAR-10 and ImageNet datasets verify the effectiveness of our defense under both centralized training and federated learning
10#
發(fā)表于 2025-3-23 06:47:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
专栏| 溧阳市| 咸阳市| 新宾| 徐水县| 甘谷县| 永清县| 城市| 青神县| 中山市| 井冈山市| 卫辉市| 琼中| 龙门县| 大丰市| 榕江县| 仪征市| 蓬安县| 西华县| 潼关县| 寿宁县| 兴仁县| 怀仁县| 沂南县| 呈贡县| 天镇县| 温州市| 新巴尔虎左旗| 宁安市| 张家界市| 天津市| 湘阴县| 永平县| 中阳县| 宁海县| 高邮市| 林西县| 石家庄市| 万全县| 井冈山市| 孝感市|