找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Mental Health; A Practitioner‘s Gui Ives Cavalcante Passos,Francisco Diego Rabelo-da-P Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: CLIP
11#
發(fā)表于 2025-3-23 13:31:58 | 只看該作者
Electronic Health Records to Detect Psychosis Risk,te prognostic accuracy in different settings in the UK and US. It is the only prognostic model in psychiatry to be implemented in real-world clinical practice, showing good evidence of feasibility. Dynamic prognostic models may be better able to model the time course of psychosis risk compared to static models.
12#
發(fā)表于 2025-3-23 15:50:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:45:33 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:03 | 只看該作者
16#
發(fā)表于 2025-3-24 09:06:12 | 只看該作者
The Use of Machine Learning Techniques to Solve Problems in Forensic Psychiatry,ne learning techniques and experimental designs that can be leveraged to address long-standing problems within the field. As such, it aims to provide a series of methodological recommendations for moving the field from advancements in risk prediction towards precision forensics.
17#
發(fā)表于 2025-3-24 12:20:02 | 只看該作者
https://doi.org/10.1007/978-3-030-29256-0s a tool to assist diagnosis, monitor treatment, and offer personalized interventions, also debating possibilities on how it could be further developed. Finally, limitations and barriers to the process of this new technology are discussed, alongside ethical implications.
18#
發(fā)表于 2025-3-24 17:12:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:08:37 | 只看該作者
Digital Phenotyping in Mood Disorders,s a tool to assist diagnosis, monitor treatment, and offer personalized interventions, also debating possibilities on how it could be further developed. Finally, limitations and barriers to the process of this new technology are discussed, alongside ethical implications.
20#
發(fā)表于 2025-3-25 02:56:38 | 只看該作者
Prediction of Suicide Risk Using Machine Learning and Big Data, using machine learning models to evaluate individualized suicide risk. Furthermore, key considerations, challenges, and the potential ethical implications of the clinical implementation of these algorithms are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 布尔津县| 秦安县| 朝阳市| 高唐县| 尚志市| 清远市| 铁岭市| 建瓯市| 大悟县| 新乡县| 丹东市| 渝北区| 嵊泗县| 米易县| 贵溪市| 汤原县| 定安县| 青浦区| 贵港市| 龙胜| 通化县| 汉源县| 定兴县| 霞浦县| 巴中市| 扶风县| 沅陵县| 遵义市| 同德县| 太谷县| 奈曼旗| 铁岭市| 灌云县| 瑞安市| 平和县| 永定县| 开鲁县| 神木县| 高雄市| 道孚县|