找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Humanities Looking at the World ; Exploring Innovative Sílvia Araújo,Micaela Aguiar,Liana Ermakova Book 2024 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 黑暗社會
11#
發(fā)表于 2025-3-23 13:08:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:00:46 | 只看該作者
13#
發(fā)表于 2025-3-23 18:13:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:59:26 | 只看該作者
Second Language Learning and Teachinged with standard topic modeling metrics of Coherence and Diversity. A new Utility metric based on canonical correlation is introduced. The three metrics identified a 20-topic solution most useful with a specific survey response dataset. This approach generalizes to literary and historical research o
15#
發(fā)表于 2025-3-24 03:28:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:05 | 只看該作者
https://doi.org/10.1007/978-3-319-62884-4iterature. In this chapter, the objective was to instantiate the MSLR to research information security and the Brazilian General Data Protection Law (called LGPD) in the public health area, based on the steps proposed by Kitchenham and Charters (., 2007) for an SLR and in the steps for inclusion of
17#
發(fā)表于 2025-3-24 12:58:33 | 只看該作者
Second Language Learning and Teaching the names of Luiz Inácio Lula da Silva and Jair Bolsonaro were used by candidates who were not running for the presidential position. The results showed that, in spite of the strong polarized context, the majority of the content was about the same general theme. We could observe the polarization on
18#
發(fā)表于 2025-3-24 15:34:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:32:22 | 只看該作者
Negative Comments Towards Formula 1 Drivers on Twitter formations of discursive communities controlled by the fans of the sport facilitates our data collection. We will analyse whether these negative comments are influenced by personal prejudice or stereotypes. Our results confirmed that racial prejudice was witnessed in the data.
20#
發(fā)表于 2025-3-25 00:59:21 | 只看該作者
Analysis of Online Electoral Advertising in 2022 Brazilian Elections Using Topic Modeling the names of Luiz Inácio Lula da Silva and Jair Bolsonaro were used by candidates who were not running for the presidential position. The results showed that, in spite of the strong polarized context, the majority of the content was about the same general theme. We could observe the polarization on less than 10% of the ads analyzed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 17:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀化市| 佛教| 鱼台县| 克什克腾旗| 安图县| 昌乐县| 驻马店市| 泽州县| 台南县| 辽宁省| 霍城县| 桑植县| 舞钢市| 禄劝| 成都市| 嘉鱼县| 修水县| 固原市| 湘阴县| 卢湾区| 乐山市| 浙江省| 金沙县| 武清区| 郯城县| 华坪县| 阿鲁科尔沁旗| 茶陵县| 罗甸县| 深州市| 阳谷县| 成武县| 涟源市| 安康市| 肇州县| 桐柏县| 峡江县| 班玛县| 黄浦区| 嵊州市| 牡丹江市|