找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Communication and Soft Computing Approaches Towards Sustainable Energy Developments; Proceedings of ISSET Gayadhar Panda,Thaiyal Na

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 11:29:20 | 只看該作者
Analyzing Customers Buying Behavior Before and After COVID-19 Using Association Rule Mining and Mac the demand and sales of some new items amid this. To effectively manage with such kind of changing economy, variety of products, their layout on shelves, and promoting special promotions, a quick and efficient customer purchasing pattern analysis is required which can help in increasing the revenue
12#
發(fā)表于 2025-3-23 15:30:12 | 只看該作者
13#
發(fā)表于 2025-3-23 18:28:38 | 只看該作者
Profitability Allocation of UAVs and Stopping Points Empowered MEC System,the technology on board, each spacecraft generates a large quantity of data that must be sent to prospective destinations. It is proposed that the well-known Intelligent Ocean Convergence Platform, which currently supports oceanic services, assists these services using cutting-edge Internet of Thing
14#
發(fā)表于 2025-3-23 23:10:32 | 只看該作者
Development of SPV-Assisted E-Mobility Charging System Based on Fuzzy Logic and PI Control as Chargg (MPPT) approach is suggested for using a boost converter derived from a photovoltaic (PV) panel at constant temp. 25?°C and constant irradiance. The constant current (CC) and constant voltage (CV) are two traditional methods for charging a battery. For fast charging with low loss, it is necessary
15#
發(fā)表于 2025-3-24 05:08:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:59:42 | 只看該作者
,A Comparative Analysis of?Short Term Load Forecasting Using LSTM, CNN, and?Hybrid CNN-LSTM,y comparing the results of three different deep learning models LSTM (Long-Short Term Memory), CNN (Convolutional Neural Network), and Hybrid CNN-LSTM for forecasting the short-term load, and each model is trained using sliding window algorithm and analyzed with statistical parameters like Mean Squa
17#
發(fā)表于 2025-3-24 13:44:56 | 只看該作者
Enhancing Grid Resilience for Improved Power System Reliability,d, also the need to lessen the effects of natural disasters. A sleek transition to a more intelligent grid depends heavily on the conceptualisation, expression, and assessment of the power grid‘s resilience. There have been several attempts to define, gauge, and evaluate smart grid resilience. Both
18#
發(fā)表于 2025-3-24 16:40:03 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大兴区| 精河县| 新化县| 西盟| 南澳县| 三河市| 时尚| 河北区| 汕头市| 无锡市| 平谷区| 富顺县| 顺义区| 光山县| 竹溪县| 哈尔滨市| 万载县| 将乐县| 额尔古纳市| 武陟县| 五原县| 当涂县| 石楼县| 嘉义县| 遵义县| 济南市| 普宁市| 竹北市| 金乡县| 丹阳市| 嵊州市| 革吉县| 东丽区| 托克托县| 宾阳县| 吴桥县| 土默特左旗| 太原市| 呈贡县| 吉木萨尔县| 罗田县|