找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffusion Source Localization in Large Networks; Lei Ying,Kai Zhu Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: NERVE
11#
發(fā)表于 2025-3-23 11:47:18 | 只看該作者
https://doi.org/10.1007/978-1-4471-5355-9This chapter focuses on source localization under continuous-time diffusion models. We first present the basic models and then discuss rumor centrality, introduced in a seminal paper [Shah and Zaman, 2011].
12#
發(fā)表于 2025-3-23 14:39:54 | 只看該作者
Refinement, Observation and ModificationThis chapter is devoted to source localization problem with partial timestamps, where besides the single snapshot of the network, the infection times of some infected nodes are also given to us. We first summarize the models used in this chapter.
13#
發(fā)表于 2025-3-23 18:37:02 | 只看該作者
14#
發(fā)表于 2025-3-23 23:22:32 | 只看該作者
Source Localization under Discrete-Time Diffusion Models,This chapter focuses on source localization under discrete-time diffusion models. We will start from simple diffusion and network models and then extend the results to more general models.
15#
發(fā)表于 2025-3-24 04:05:15 | 只看該作者
Source Localization under Continuous-Time Diffusion Models,This chapter focuses on source localization under continuous-time diffusion models. We first present the basic models and then discuss rumor centrality, introduced in a seminal paper [Shah and Zaman, 2011].
16#
發(fā)表于 2025-3-24 07:44:55 | 只看該作者
Source Localization with Partial Timestamps,This chapter is devoted to source localization problem with partial timestamps, where besides the single snapshot of the network, the infection times of some infected nodes are also given to us. We first summarize the models used in this chapter.
17#
發(fā)表于 2025-3-24 11:06:34 | 只看該作者
Open Questions,While significant progress has been made on source localization in large-scale networks under various different models, a number of questions remain open. We next summarize the open questions in three categories: (1) more general diffusion models, (2) realistic networks, and (3) incomplete observations.
18#
發(fā)表于 2025-3-24 17:50:56 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:59 | 只看該作者
Synthesis Lectures on Learning, Networks, and Algorithmshttp://image.papertrans.cn/d/image/279019.jpg
20#
發(fā)表于 2025-3-25 00:38:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平潭县| 盘锦市| 黄陵县| 富蕴县| 柘城县| 修文县| 广灵县| 越西县| 原平市| 新和县| 饶平县| 延吉市| 鄢陵县| 吉木萨尔县| 乃东县| 桂林市| 东辽县| 千阳县| 连城县| 精河县| 卫辉市| 弥勒县| 衡水市| 罗山县| 措勤县| 德惠市| 平武县| 太原市| 海盐县| 红原县| 台东市| 吉林市| 孟州市| 宜都市| 红安县| 长寿区| 澄江县| 牙克石市| 新蔡县| 横峰县| 正阳县|