找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffusion Processes and their Sample Paths; Kiyosi It?,Henry P. McKean Book 1996 Springer-Verlag Berlin Heidelberg 1996 Bessel process.Bro

[復制鏈接]
樓主: industrious
21#
發(fā)表于 2025-3-25 04:33:35 | 只看該作者
Brownian Local Times,Consider the standard .ianmotion D and recall the associated differential operator . =D. / 2 acting on D(.) = C. (R.).
22#
發(fā)表于 2025-3-25 10:20:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:00:09 | 只看該作者
Generators,A particle starts at time . = 0 at -1 ≤ . < 0, moving at speed +1 until it hits . = 0; at that moment, it begins a reflecting B.ian motion on [0, + ∞), stopping at the passage time m. to . = 1, waiting at that place for an exponential holding time e with mean and jumping at time m. + e to the point ∞.
24#
發(fā)表于 2025-3-25 16:29:54 | 只看該作者
A general view of diffusion in several dimensions,Given a (conservative) diffusion D on a space . as described in 7.1, its generator . can be expressed in terms of the hitting probabilities and mean exit times.for open D?Q via E. B. Dynkin’s formula . to borrow a phrase of W. Feller’s,
25#
發(fā)表于 2025-3-25 21:27:53 | 只看該作者
26#
發(fā)表于 2025-3-26 00:24:46 | 只看該作者
978-3-540-60629-1Springer-Verlag Berlin Heidelberg 1996
27#
發(fā)表于 2025-3-26 04:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:39:36 | 只看該作者
Time changes and killing,ntial operator .? of degree ≦2 expressed in terms of . (scale, speed measure, . via the formulas 4.1.8) [or 4.1.31,32,33)] and each invariant has a simple probabilistic meaning embodied in the formulas 4.1.7) [or 4.1.22, 23 b, 23 c, and 26)].
29#
發(fā)表于 2025-3-26 16:21:26 | 只看該作者
Local and inverse local times,taining 0 as an inside point or as a left end point, with — .(0) + .(0) (.)(0) = 0 in the second case. A number of the statements made below hold for transient diffusions also (see esp. 6.3, 6.5, 6.6); the necessary modifications of the proofs are left to the reader.
30#
發(fā)表于 2025-3-26 20:10:01 | 只看該作者
Brownian motion in several dimensions,g as . is compact or not, let C. be the space of bounded continuous functions .: . ? ∞ → . with .(∞) ≡ 0 , introduce the (continuous) . with . and .(+∞) ≡ ∞, define ., ., and . . and .m+ as usual, take . ∈ .) with the usual properties including P∞ ., and call the associated motion ..1) and 2) are not Unrelated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
凌云县| 西乌珠穆沁旗| 阿拉尔市| 汶川县| 衡山县| 方山县| 陵水| 锡林浩特市| 广汉市| 芮城县| 恩施市| 邵武市| 皋兰县| 瑞丽市| 新河县| 内丘县| 德格县| 湟源县| 郓城县| 渭源县| 滦南县| 黄浦区| 新安县| 陆河县| 涟源市| 教育| 林州市| 临夏市| 宁波市| 马山县| 德格县| 都江堰市| 杂多县| 绿春县| 黄梅县| 嘉禾县| 达孜县| 平阴县| 察隅县| 常宁市| 莎车县|