找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie und homogene R?ume; Kai K?hler Textbook 20141st edition Springer Fachmedien Wiesbaden 2014 Differentialgeometrie.Dif

[復(fù)制鏈接]
樓主: 可樂(lè)
21#
發(fā)表于 2025-3-25 05:49:46 | 只看該作者
https://doi.org/10.1007/978-4-431-67929-5llstellen von Schnitten in Vektorfeldern zu erhalten. Deren (mit einem Vorzeichen gewichtete) Anzahl wird dabei mit einem Integral über ein bestimmtes Polynom in Termen der Krümmung des Levi-Civita-Zusammenhangs identifiziert. Einem Ansatz von Mathai und Quillen folgend, ist diese Formel genauer ein
22#
發(fā)表于 2025-3-25 10:53:23 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:54 | 只看該作者
Recent Advances in Nitric Oxide ResearchTrotzdem sind sie eine sehr spezielle Klasse von Mannigfaltigkeiten, an denen man viele allgemeinere Effekte nicht nachvollziehen kann, wie man z.B. an ihrem trivialen Tangentialbündel schon bemerkt. Deutlich interessantere und teilweise ?hnlich gut zu verstehende Beispiele findet man, in dem man Li
24#
發(fā)表于 2025-3-25 18:47:44 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:33 | 只看該作者
Studies in Computational Intelligencesum durch eine Mannigfaltigkeit modelliert wird und das Gravitationsfeld als eine nicht-positiv-definite quadratische Form interpretiert wird. In diesem Kapitel sollen weniger die kosmologischen und astronomischen Konsequenzen der Theorie untersucht werden, als vielmehr die Grundlagen wie etwa die F
26#
發(fā)表于 2025-3-26 00:28:46 | 只看該作者
https://doi.org/10.1007/978-3-8348-8313-1Differentialgeometrie; Differentialtopologie; Globale Analysis; Homogene R?ume; Lorentz-Gruppe; Mannigfal
27#
發(fā)表于 2025-3-26 05:48:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:21:39 | 只看該作者
Kai K?hlerVollst?ndiger Zugang zur Differentialgeometrie homogener R?ume.Kompakte Darstellung mit Beweisen.Für Studierende der Mathematik zur Vertiefung mit Schwerpunkt Differentialgeometrie im Bachelorstudium
29#
發(fā)表于 2025-3-26 15:24:02 | 只看該作者
http://image.papertrans.cn/d/image/278874.jpg
30#
發(fā)表于 2025-3-26 18:44:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉黎县| 集安市| 开阳县| 吉安县| 泌阳县| 婺源县| 财经| 玛纳斯县| 扬中市| 日照市| 德钦县| 北安市| 楚雄市| 阜南县| 阿图什市| 永年县| 金阳县| 沙田区| 桑植县| 图木舒克市| 南充市| 陵水| 东海县| 临高县| 盐池县| 双鸭山市| 易门县| 东乡| 邳州市| 万源市| 房产| 凤山市| 抚松县| 正定县| 咸宁市| 蒲江县| 苍梧县| 内江市| 剑河县| 仁布县| 贵定县|