找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie; Heinrich Brauner Book 1981 Springer Fachmedien Wiesbaden 1981 Ableitung.Analysis.Diffeomorphismus.Differentialgeome

[復(fù)制鏈接]
樓主: Polk
11#
發(fā)表于 2025-3-23 13:11:01 | 只看該作者
,Geometrie auf Fl?chen in ?,,Der Tangentialvektorraum einer .-Fl?che in ?. ist als Unterraum eines Tangentialvektorraumes von ?. ein euklidischer Vektorraum. Damit wird auf einem .-Blatt . ? ?. ein metrisches Tensorfeld definiert; eine Immersion .: . → ?. bestimmt ein metrisches Tensorfeld auf . ? ?..
12#
發(fā)表于 2025-3-23 15:27:19 | 只看該作者
,Riemannsche R?ume,In Verallgemeinerung des Begriffes Blatt definieren wir differenzierbare Mannigfaltigkeiten und studieren auf diesen differenzierbare Abbildungen. Die Zerlegung der Eins gestattet es, lokale Begriffsbildungen auf Mannigfaltigkeiten auszudehnen.
13#
發(fā)表于 2025-3-23 21:20:15 | 只看該作者
https://doi.org/10.1007/978-3-322-89712-1Ableitung; Analysis; Diffeomorphismus; Differentialgeometrie; Geometrie; Gleichung; Krümmung; Mannigfaltigk
14#
發(fā)表于 2025-3-23 23:40:51 | 只看該作者
978-3-528-03809-0Springer Fachmedien Wiesbaden 1981
15#
發(fā)表于 2025-3-24 05:11:13 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:04 | 只看該作者
D. Marc Kilgour,Herb Kunze,Xu Wanger Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
17#
發(fā)表于 2025-3-24 12:31:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:12:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:43:38 | 只看該作者
,Differentialgeometrie der Kurven in ?,er Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
20#
發(fā)表于 2025-3-25 03:11:20 | 只看該作者
,Krümmungstheorie der Fl?chen in ?,rt auf die Gleichung von Gau?. Der Normalanteil definiert den Gau?-Operator auf ., der jedem normierten Normalfeld von . ein symmetrisches 2-Tensorfeld auf . zuordnet; eine Immersion .: . ?. bestimmt bezüglich jedes normierten Normalfeldes l?ngs . ein Gau?sches Tensorfeld auf . ? ?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丁青县| 商洛市| 青龙| 芦山县| 赤水市| 澄迈县| 龙游县| 田阳县| 蓬安县| 金溪县| 海口市| 姜堰市| 成安县| 隆安县| 湟中县| 庄河市| 仁怀市| 公安县| 镇坪县| 托里县| 涿鹿县| 黄浦区| 晋宁县| 柯坪县| 海安县| 济阳县| 宜州市| 横峰县| 西乡县| 新蔡县| 巩义市| 白水县| 新平| 华池县| 湘西| 平凉市| 瑞安市| 郯城县| 游戏| 咸宁市| 石林|