找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Topology; Proceedings of the S Ulrich Koschorke Conference proceedings 1988 Springer-Verlag Berlin Heidelberg 1988 Immersion.d

[復制鏈接]
查看: 27004|回復: 51
樓主
發(fā)表于 2025-3-21 16:46:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Differential Topology
副標題Proceedings of the S
編輯Ulrich Koschorke
視頻videohttp://file.papertrans.cn/279/278801/278801.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Differential Topology; Proceedings of the S Ulrich Koschorke Conference proceedings 1988 Springer-Verlag Berlin Heidelberg 1988 Immersion.d
描述The main subjects of the Siegen Topology Symposium are reflected in this collection of 16 research and expository papers. They center around differential topology and, more specifically, around linking phenomena in 3, 4 and higher dimensions, tangent fields, immersions and other vector bundle morphisms. Manifold categories, K-theory and group actions are also discussed.
出版日期Conference proceedings 1988
關鍵詞Immersion; differential topology; manifold; topology
版次1
doihttps://doi.org/10.1007/BFb0081464
isbn_softcover978-3-540-50369-9
isbn_ebook978-3-540-45990-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Differential Topology影響因子(影響力)




書目名稱Differential Topology影響因子(影響力)學科排名




書目名稱Differential Topology網絡公開度




書目名稱Differential Topology網絡公開度學科排名




書目名稱Differential Topology被引頻次




書目名稱Differential Topology被引頻次學科排名




書目名稱Differential Topology年度引用




書目名稱Differential Topology年度引用學科排名




書目名稱Differential Topology讀者反饋




書目名稱Differential Topology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:50:43 | 只看該作者
Barbara Dodd,Tania Russell,Michael Oerlemanst of the local topological type of V. We show here how to interpret this set of polar quotients in terms of the minimal Waldhausen decomposition of the exterior of the (algebraic) link in S. associated to V.
板凳
發(fā)表于 2025-3-22 01:05:12 | 只看該作者
地板
發(fā)表于 2025-3-22 05:16:45 | 只看該作者
Conference proceedings 1988ial topology and, more specifically, around linking phenomena in 3, 4 and higher dimensions, tangent fields, immersions and other vector bundle morphisms. Manifold categories, K-theory and group actions are also discussed.
5#
發(fā)表于 2025-3-22 10:56:37 | 只看該作者
On indices of tangent fields with finite singularities,
6#
發(fā)表于 2025-3-22 15:37:46 | 只看該作者
On the K-theory of the classifying spaces of the general linear groups over finite fields,
7#
發(fā)表于 2025-3-22 19:33:26 | 只看該作者
A reciprocity law for symmetric products of G-sets,
8#
發(fā)表于 2025-3-23 00:46:35 | 只看該作者
A topological interpretation for the polar quotients of an algebraic plane curve singularity,for a person at home with 3-dimensional topology. On the other hand, very little is assumed from the field of singularities..To each germ of curve V at the origin of ?. there is attached a pencil of curves : the pencil of polars. The topological type of its "general fiber" is a local analytic invari
9#
發(fā)表于 2025-3-23 05:05:00 | 只看該作者
Surgering the equatorial immersion in law dimensions,sional multiple point, a geometric obstruction to finding an immersion in five space with the same property is given. A series of proposed geometric constructions is given. Completing each of these constructions will lead to further insight to Eccles‘s theorem and the Kervaire invariant problem.
10#
發(fā)表于 2025-3-23 06:16:58 | 只看該作者
,The singularity method and immersions of m-manifolds into manifolds of dimensions 2m ? 2, 2m ? 3 anon range, and a computational approach to the relevant obstruction groups. Thus it becomes a matter of easy routine to calculate the indeterminacies of classical second and third order obstructions. Often these indeterminacies are so large that only Stiefel-Whitney classes survive.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-5 16:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
漾濞| 垫江县| 高陵县| 正安县| 庆阳市| 那坡县| 蒲江县| 郴州市| 永城市| 兰坪| 邻水| 乌什县| 三台县| 石屏县| 武义县| 龙江县| 阿克陶县| 同仁县| 金门县| 庆城县| 新绛县| 辛集市| 抚远县| 马龙县| 兴安盟| 宁明县| 灵台县| 金湖县| 金阳县| 同心县| 宣恩县| 重庆市| 栾城县| 罗山县| 罗江县| 永胜县| 安达市| 巴彦淖尔市| 通州市| 江阴市| 金塔县|