找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Privacy and Applications; Tianqing Zhu,Gang Li,Philip S. Yu Book 2017 Springer International Publishing AG 2017 data analysis

[復(fù)制鏈接]
查看: 10084|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:22:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Privacy and Applications
編輯Tianqing Zhu,Gang Li,Philip S. Yu
視頻videohttp://file.papertrans.cn/279/278789/278789.mp4
概述Presents differential privacy in a more comprehensive style.Provides detailed coverage on differential privacy in the perspective of engineering rather than computing theory.Includes examples on vario
叢書名稱Advances in Information Security
圖書封面Titlebook: Differential Privacy and Applications;  Tianqing Zhu,Gang Li,Philip S. Yu Book 2017 Springer International Publishing AG 2017 data analysis
描述.This book focuses on differential privacy and its application with an emphasis on technical and application aspects. This book also presents the most recent research on differential privacy with a theory perspective. It provides an approachable strategy for researchers and engineers to implement differential privacy in real world applications..Early chapters are focused on two major directions, differentially private data publishing and differentially private data analysis. Data publishing focuses on how to modify the original dataset or the queries with the guarantee of differential privacy. Privacy data analysis concentrates on how to modify the data analysis algorithm to satisfy differential privacy, while retaining a high mining accuracy. The authors also introduce several applications in real world applications, including recommender systems and location privacy. .Advanced level students in computer science and engineering, as well as researchers and professionals working in privacy preserving, data mining, machine learning and data analysis will find this book useful as a reference. Engineers in database, network security, social networks and web services will also find this
出版日期Book 2017
關(guān)鍵詞data analysis; data mining; data release; differential policy; location privacy; machine learning; privacy
版次1
doihttps://doi.org/10.1007/978-3-319-62004-6
isbn_softcover978-3-319-87211-7
isbn_ebook978-3-319-62004-6Series ISSN 1568-2633 Series E-ISSN 2512-2193
issn_series 1568-2633
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Differential Privacy and Applications影響因子(影響力)




書目名稱Differential Privacy and Applications影響因子(影響力)學(xué)科排名




書目名稱Differential Privacy and Applications網(wǎng)絡(luò)公開度




書目名稱Differential Privacy and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differential Privacy and Applications被引頻次




書目名稱Differential Privacy and Applications被引頻次學(xué)科排名




書目名稱Differential Privacy and Applications年度引用




書目名稱Differential Privacy and Applications年度引用學(xué)科排名




書目名稱Differential Privacy and Applications讀者反饋




書目名稱Differential Privacy and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:34 | 只看該作者
https://doi.org/10.1007/978-3-031-56188-7 bound or sample complexity. But private learning frameworks can only deal with limited learning algorithms, while nearly all types of analysis algorithms can be implemented in a Laplace/exponential framework.
板凳
發(fā)表于 2025-3-22 01:13:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:06:11 | 只看該作者
Lisa Wiebesiek,Relebohile Moletsaner of queries is limited, as a large volume of noise will be introduced when the number of queries increases. A method called graph update method is then presented in this chapter to solve this serious problem. The key idea of the method is to transfer the query release problem into an iteration proc
5#
發(fā)表于 2025-3-22 10:56:05 | 只看該作者
Alexandra Budke,Kimberley Hindmarshms and utilize differential privacy to prevent the leaking of private information when releasing the dataset. A private tagging release algorithm is presented in this chapter to provide comprehensive privacy-preserving capability for individuals and maximizing the utility of the released dataset. Th
6#
發(fā)表于 2025-3-22 14:01:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:19:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:57 | 只看該作者
Differentially Private Deep Learning,uted Private SGD. Each of them is focusing on a particular deep learning algorithm and is dealing with those two challenges in different ways. Finally, this chapter shows several popular datasets that can be used in differentially private deep learning.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 汉寿县| 城口县| 即墨市| 迁西县| 罗山县| 五寨县| 喀什市| 镇康县| 溧阳市| 甘肃省| 苍南县| 昭通市| 互助| 即墨市| 东兴市| 灵台县| 诸暨市| 都江堰市| 阿城市| 东乡族自治县| 霍州市| 泸州市| 旅游| 营口市| 大冶市| 仁寿县| 晴隆县| 华池县| 黎城县| 漳浦县| 新蔡县| 沁阳市| 成武县| 永定县| 铅山县| 衡阳市| 仙桃市| 灵宝市| 定陶县| 乌兰察布市|