找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Inclusions in a Banach Space; Alexander Tolstonogov Book 2000 Springer Science+Business Media Dordrecht 2000 Banach space.Mat

[復(fù)制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 13:42:28 | 只看該作者
12#
發(fā)表于 2025-3-23 16:23:20 | 只看該作者
Evgeny Vinokurov,Alexander LibmanIn this Chapter differential inclusions with non-convex, non-compact right hand side are considered. Questions of the existence and properties of Caratheodory type of solution sets are studied.
13#
發(fā)表于 2025-3-23 21:32:58 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:46 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:51:59 | 只看該作者
Acta Neurochirurgica Supplementand side and a set of all, of the same type of solutions of a differential inclusions with convexified right hand side. It is shown that each, of some type or other, solution of the differential inclusion is a selector of the same solution of a multi-valued differential equation generated by a diffe
17#
發(fā)表于 2025-3-24 12:33:57 | 只看該作者
Typology of Regional Organizationsidered as a multi-function of time. Properties of solutions of this equation are revealed. It is shown that this equation is satisfied not only by the integral funnel of a differential inclusion but also by the integral funnel of an ordinary differential equation having a non-unique solution. An int
18#
發(fā)表于 2025-3-24 15:42:24 | 只看該作者
https://doi.org/10.1007/978-94-015-9490-5Banach space; Mathematica; differential equation; differential inclusions; functional analysis; ordinary
19#
發(fā)表于 2025-3-24 20:22:22 | 只看該作者
978-90-481-5580-4Springer Science+Business Media Dordrecht 2000
20#
發(fā)表于 2025-3-25 00:59:20 | 只看該作者
Multi-Valued Differential Equation Generated by a Differential Inclusion, sets of an initial Banach space. The solution of this equation is a multi-function of time having convex compact sets as its values. Questions of the existence of both local and global solutions of this equation are examined. These questions are studied in terms of ideas and methods of the theory o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
当涂县| 渑池县| 阜平县| 石景山区| 江华| 信丰县| 长葛市| 双辽市| 崇礼县| 岳池县| 花垣县| 高青县| 周至县| 宿迁市| 天水市| 玛多县| 铁力市| 尉犁县| 抚顺市| 大悟县| 遵义市| 吉木乃县| 黔江区| 延安市| 天台县| 三原县| 大埔区| 岳西县| 商河县| 扶绥县| 马龙县| 嘉峪关市| 元氏县| 敖汉旗| 武川县| 五大连池市| 根河市| 兴隆县| 门源| 寻甸| 甘肃省|