找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Inclusions; Set-Valued Maps and Jean-Pierre Aubin,Arrigo Cellina Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kontingentg

[復(fù)制鏈接]
樓主: GERD847
11#
發(fā)表于 2025-3-23 11:00:54 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:36 | 只看該作者
Language, Humans, and the HumanitiesWe shall investigate whether differential inclusions . do have trajectories satisfying the property . where . Trajectories x(·) of differential inclusion (1) satisfying (2) will be called “monotone trajectories” (with respect to . and .).
13#
發(fā)表于 2025-3-23 18:10:22 | 只看該作者
14#
發(fā)表于 2025-3-24 01:25:40 | 只看該作者
Set-Valued Maps,We gather in this chapter the properties of set-valued maps which are needed for the study of differential inclusions.
15#
發(fā)表于 2025-3-24 04:33:50 | 只看該作者
Existence of Solutions to Differential Inclusions,In what follows we shall deal with the existence and properties of solutions to differential inclusions of the form .or
16#
發(fā)表于 2025-3-24 07:43:39 | 只看該作者
Differential Inclusions with Maximal Monotone Maps,We devote this chapter to a very important class of differential inclusions . where .(.) ? ?.(.)is a so-called “maximal monotone” set-valued map.
17#
發(fā)表于 2025-3-24 11:23:46 | 只看該作者
Viability Theory: The Nonconvex Case,We devote this chapter to general Viability Theory and we postpone to the next chapter the further results obtained when we assume that the viability subset is convex.
18#
發(fā)表于 2025-3-24 15:09:44 | 只看該作者
19#
發(fā)表于 2025-3-24 22:22:33 | 只看該作者
Introduction,(.) (the “controls”). Indeed, if we introduce the set-valued map. then solutions to the differential equations (*) are solutions to the “differential inclusion” . in which the controls do not appear explicitely.
20#
發(fā)表于 2025-3-25 02:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茂名市| 武乡县| 沁阳市| 枞阳县| 宁陵县| 广灵县| 杂多县| 皋兰县| 阳西县| 左云县| 阜新市| 神木县| 丹东市| 上饶县| 若尔盖县| 福建省| 黄龙县| 平泉县| 祁阳县| 绥棱县| 巴东县| 高台县| 阳原县| 无锡市| 海阳市| 垫江县| 砚山县| 竹北市| 台东市| 广宗县| 广饶县| 崇义县| 长沙市| 建宁县| 贡山| 海宁市| 兴业县| 石门县| 垦利县| 伊金霍洛旗| 三亚市|