找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry, Group Representations, and Quantization; J?-Dieter Hennig,Wolfgang Lücke,Ji?í Tolar Conference proceedings 1991 Spr

[復(fù)制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-26 21:56:50 | 只看該作者
https://doi.org/10.1007/978-1-349-07365-8lier results on null states of so(3, 2)representations. For the other we first obtain the characters of the unitary representations of so(3, 2)and then we show their equivalence with the spectrum results
32#
發(fā)表于 2025-3-27 02:03:36 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:33 | 只看該作者
34#
發(fā)表于 2025-3-27 09:29:40 | 只看該作者
35#
發(fā)表于 2025-3-27 16:19:13 | 只看該作者
Joachim Sch?ffel,Raimund Kemper GL(2,?) and the linear Lorentz-conformal group CO(1,3) = ?. SO(1, 3) ; the tetrad part is then separately invariant under GL(4, ?). In usual models, gravitational Lagrangians are built in a. SO(1,3)-invariant way, and Lagrangians for spinor-tetrad systems are invariant under the homomorphically cor
36#
發(fā)表于 2025-3-27 18:56:18 | 只看該作者
37#
發(fā)表于 2025-3-27 22:32:24 | 只看該作者
38#
發(fā)表于 2025-3-28 05:38:48 | 只看該作者
,GL(,, ?), tetrads and generalized space-time dynamics, GL(2,?) and the linear Lorentz-conformal group CO(1,3) = ?. SO(1, 3) ; the tetrad part is then separately invariant under GL(4, ?). In usual models, gravitational Lagrangians are built in a. SO(1,3)-invariant way, and Lagrangians for spinor-tetrad systems are invariant under the homomorphically cor
39#
發(fā)表于 2025-3-28 10:08:47 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:55 | 只看該作者
0075-8450 les on a wide variety of applications of these techniques in classical continuum physics, gauge theories, quantization procedures, and the foundations of quantum theory. The articles, written by leading scientists, address both researchers and grad- uate students in mathematics, physics, and philoso
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长治市| 稻城县| 临城县| 定远县| 高平市| 伽师县| 呼和浩特市| 察哈| 化州市| 洛隆县| 新民市| 安西县| 永州市| 兴安盟| 中江县| 肥西县| 巴楚县| 山西省| 昔阳县| 津市市| 建昌县| 宝山区| 通海县| 巴林右旗| 广昌县| 临西县| 栾城县| 内乡县| 灵武市| 海盐县| 易门县| 北海市| 临猗县| 项城市| 茶陵县| 南江县| 八宿县| 蓬莱市| 北碚区| 奉节县| 丰台区|