找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Varieties with Degenerate Gauss Maps; Maks A. Akivis,Vladislav V. Goldberg Textbook 2004 Springer-Verlag New York

[復(fù)制鏈接]
樓主: Suture
21#
發(fā)表于 2025-3-25 07:07:47 | 只看該作者
1613-5237 the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, fin
22#
發(fā)表于 2025-3-25 07:43:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:23 | 只看該作者
Wie der Schall soziale R?ume schafftauss maps without singularities, in Section 3.4, we introduce and investigate an important class of varieties with degenerate Gauss maps without singularities, the so-called Sacksteder-Bourgain hypersurface, in the affine space A., and in Section 3.5, we consider complete parabolic varieties in Riemannian spaces of constant curvature.
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:34 | 只看該作者
Foundational Material,we consider the main topics associated with differentiable manifolds: tangent spaces, frame bundles, mappings, exterior differential calculus, Cartan’s lemma, completely integrable systems, the Frobenius theorem, Cartan’s test for a system in involution, the structure equations of a differentiable m
27#
發(fā)表于 2025-3-26 07:55:32 | 只看該作者
Varieties in Projective Spaces and Their Gauss Maps,ntal tensor and the second fundamental form, and the asymptotic lines and asymptotic cone) associated with a variety in a projective space ?., in Section 2.3, we define the rank of a variety and varieties with degenerate Gauss maps. In Section 2.4, we consider the main examples of varieties with deg
28#
發(fā)表于 2025-3-26 08:38:16 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卫辉市| 延庆县| 怀集县| 昭苏县| 潼南县| 法库县| 八宿县| 合水县| 务川| 巧家县| 西平县| 无为县| 靖远县| 育儿| 乌恰县| 资源县| 厦门市| 东丽区| 临沧市| 淮安市| 本溪市| 宜川县| 宁波市| 马边| 金沙县| 迁安市| 邻水| 体育| 郓城县| 阿克陶县| 岑巩县| 平塘县| 芦山县| 神木县| 治多县| 舟山市| 宜川县| 奈曼旗| 庆阳市| 绥阳县| 张家口市|