找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Varieties with Degenerate Gauss Maps; Maks A. Akivis,Vladislav V. Goldberg Textbook 2004 Springer-Verlag New York

[復(fù)制鏈接]
樓主: Suture
21#
發(fā)表于 2025-3-25 07:07:47 | 只看該作者
1613-5237 the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, fin
22#
發(fā)表于 2025-3-25 07:43:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:23 | 只看該作者
Wie der Schall soziale R?ume schafftauss maps without singularities, in Section 3.4, we introduce and investigate an important class of varieties with degenerate Gauss maps without singularities, the so-called Sacksteder-Bourgain hypersurface, in the affine space A., and in Section 3.5, we consider complete parabolic varieties in Riemannian spaces of constant curvature.
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:34 | 只看該作者
Foundational Material,we consider the main topics associated with differentiable manifolds: tangent spaces, frame bundles, mappings, exterior differential calculus, Cartan’s lemma, completely integrable systems, the Frobenius theorem, Cartan’s test for a system in involution, the structure equations of a differentiable m
27#
發(fā)表于 2025-3-26 07:55:32 | 只看該作者
Varieties in Projective Spaces and Their Gauss Maps,ntal tensor and the second fundamental form, and the asymptotic lines and asymptotic cone) associated with a variety in a projective space ?., in Section 2.3, we define the rank of a variety and varieties with degenerate Gauss maps. In Section 2.4, we consider the main examples of varieties with deg
28#
發(fā)表于 2025-3-26 08:38:16 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 海安县| 西安市| 同江市| 乌拉特后旗| 锡林郭勒盟| 日喀则市| 肇庆市| 枣庄市| 武义县| 阿合奇县| 钦州市| 大厂| 五常市| 青川县| 台北市| 柳林县| 紫金县| 红桥区| 富裕县| 永济市| 三门县| 巨野县| 台湾省| 自治县| 哈巴河县| 即墨市| 资中县| 如皋市| 宁阳县| 莒南县| 涿鹿县| 辉县市| 突泉县| 青浦区| 马公市| 绥宁县| 岳阳市| 静海县| 嵩明县| 涪陵区|