找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Lightlike Submanifolds; Krishan L. Duggal,Bayram Sahin Book 2010 Birkh?user Basel 2010 Semi-Riemannian geometry.d

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 12:12:01 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:48 | 只看該作者
Applications of lightlike geometry,In this chapter we present applications of lightlike geometry in the study of null 2-surfaces in spacetimes, lightlike versions of harmonic maps and morphisms, CRstructures in general relativity and lightlike contact geometry in physics.
13#
發(fā)表于 2025-3-23 18:35:14 | 只看該作者
Applications of lightlike hypersurfaces,rst, we deal with .. We prove a . and relate it with physically significant works of Galloway [197] on null hypersurfaces in general relativity, Ashtekar and Krishnan’s work [16] on dynamical horizons and Sultana-Dyer’s work [378, 379] on ., with related references. Secondly, we present the latest work on . [20].
14#
發(fā)表于 2025-3-23 23:11:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:31 | 只看該作者
Rationalit?t und Egoismus im Recht r every pair (.) of the points . ∈ .. This function . is known as the Euclidean metric in .. Then, we call . with the metric . the .-dimensional Euclidean space. Consider . a real .-dimensional vector space with a symmetric bilinear mapping .: . × . → .. We say that g is positive (negative) definite
16#
發(fā)表于 2025-3-24 07:27:42 | 只看該作者
https://doi.org/10.1007/978-3-658-43825-8from the point of physics lightlike hypersurfaces are of importance as they are models of various types of horizons, such as Killing, dynamical and conformal horizons, studied in general relativity (see some details in Chapter 3). However, due to the degenerate metric of a lightlike submanifold ., o
17#
發(fā)表于 2025-3-24 14:38:21 | 只看該作者
Rationalit?t und Umweltverhaltenrst, we deal with .. We prove a . and relate it with physically significant works of Galloway [197] on null hypersurfaces in general relativity, Ashtekar and Krishnan’s work [16] on dynamical horizons and Sultana-Dyer’s work [378, 379] on ., with related references. Secondly, we present the latest w
18#
發(fā)表于 2025-3-24 16:51:21 | 只看該作者
Rationalit?ten des Kinderschutzesdegenerate case [45, 133 373], CR-lightlike submanifolds are non-trivial (i.e., they do not include invariant (complex) and real parts). Since then considerable work has been done on new concepts to obtain a variety of classes of lightlike submanifolds. In this chapter we present up-to-date new resu
19#
發(fā)表于 2025-3-24 19:05:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连城县| 收藏| 嘉义县| 手游| 夹江县| 沙湾县| 泌阳县| 武胜县| 新化县| 琼海市| 溆浦县| 阿拉善右旗| 阿克苏市| 遂溪县| 庐江县| 安新县| 鄯善县| 岑溪市| 吉林省| 潜江市| 肇东市| 揭阳市| 兰西县| 伊金霍洛旗| 永昌县| 阳原县| 津南区| 巴南区| 前郭尔| 县级市| 东安县| 宁河县| 西安市| 神池县| 肥城市| 平泉县| 台东县| 安国市| 佛学| 四川省| 绍兴市|