找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Relativity; A Volume in Honour o M. Cahen,M. Flato Book 1976 D. Reidel Publishing Company, Dordrecht, Holland 197

[復制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 12:10:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:20:38 | 只看該作者
Rational Lawmaking under Review the mapping is an isometry, the tension field becomes none other than the mean curvature vector field. A harmonic map is one for which the tension field is zero, so that an isometric harmonic map has zero mean curvature, i.e. the image is a minimal surface. Considerable interest has been shown duri
13#
發(fā)表于 2025-3-23 21:42:41 | 只看該作者
Mark D. Terjesen Ph.D.,Maria A. Espositobe: Does there exist a conformal metric for which the scalar curvature is constant? And also problems posed by Chern, Nirenberg and others. All these problems are almost entirely solved, however there remain some open questions (see the conjectures).
14#
發(fā)表于 2025-3-24 00:39:13 | 只看該作者
15#
發(fā)表于 2025-3-24 02:41:36 | 只看該作者
The loop space homology algebrasics, we were led to study the actions of a group of transformations of a manifold . (the space-time in general relativity) on the sections of a vector bundle over . (the tensor or spinor fields of a given type). Several equivalent characterizations of these actions are given. A similar study is made for a Lie algebra of vector fields.
16#
發(fā)表于 2025-3-24 10:24:47 | 只看該作者
17#
發(fā)表于 2025-3-24 12:00:54 | 只看該作者
Fair Division under Asymmetric Informationfollows originated in attempts to understand the notions of . and . for bodies in space, it turns out that the ‘mobile’ and ‘comobile’ morphisms that we define occur throughout mathematics. Indeed, they are to be found in any categories between which there is a pair of adjoint functors.
18#
發(fā)表于 2025-3-24 14:55:38 | 只看該作者
19#
發(fā)表于 2025-3-24 19:32:37 | 只看該作者
Tommaso Ruggeri,Masaru SugiyamaBounded harmonic functions on groups of non exponential growth are constant.
20#
發(fā)表于 2025-3-25 03:11:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台南县| 岳普湖县| 增城市| 手机| 汉中市| 南召县| 从化市| 宝兴县| 清镇市| 正宁县| 商城县| 日照市| 赣州市| 昭通市| 麻江县| 大理市| 花垣县| 扬中市| 平罗县| 天全县| 台中县| 民权县| 特克斯县| 南川市| 濮阳市| 瑞昌市| 渭源县| 科尔| 南澳县| 铜川市| 家居| 鲁山县| 阜城县| 汝阳县| 北辰区| 寿光市| 资阳市| 铁力市| 宁远县| 涿鹿县| 定南县|