找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Mathematical Physics; Part I. Manifolds, L Gerd Rudolph,Matthias Schmidt Book 2013 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: 一再
11#
發(fā)表于 2025-3-23 10:43:54 | 只看該作者
Integrability,em and with a number of examples: the two-body problem, the two-centre problem, the top, the spherical pendulum and the Toda lattice. Thereafter, we analyse Lax pairs in the context of Hamiltonian systems on coadjoint orbits. In particular, we show that the Toda lattice can be understood in this fra
12#
發(fā)表于 2025-3-23 16:25:50 | 只看該作者
Hamilton-Jacobi Theory,atical physics. On the one hand, it builds a bridge between classical mechanics and other branches of physics, in particular, optics. On the other hand, it yields a link between classical and quantum theory. We start with deriving the Hamilton-Jacobi equation and proving the classical Jacobi Theorem
13#
發(fā)表于 2025-3-23 22:04:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:23:45 | 只看該作者
https://doi.org/10.1007/978-94-007-5345-7Analysis on Manifolds; Differential Geometry Applied; Hamilton-Jacobi Theory; Hamiltonian Systems; Integ
15#
發(fā)表于 2025-3-24 04:24:04 | 只看該作者
978-94-017-8198-5Springer Science+Business Media Dordrecht 2013
16#
發(fā)表于 2025-3-24 09:34:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:00 | 只看該作者
18#
發(fā)表于 2025-3-24 17:30:31 | 只看該作者
David Ben-Chaim,Yaffa Keret,Bat-Sheva Ilanys and discuss level sets in some detail. Thereafter, we carry over the concepts of differentiable mapping, tangent space and derivative from classical calculus to manifolds and derive manifold versions of the Inverse Mapping Theorem, the Implicit Mapping Theorem and the Constant Rank Theorem. Next,
19#
發(fā)表于 2025-3-24 22:40:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 兰西县| 乐昌市| 星座| 望谟县| 峡江县| 新津县| 易门县| 家居| 黄梅县| 大兴区| 新蔡县| 盐城市| 诸暨市| 城市| 宁陵县| 三门峡市| 慈溪市| 张北县| 锦屏县| 丰县| 柯坪县| 米脂县| 上林县| 南皮县| 福州市| 鄂托克前旗| 平南县| 平原县| 商南县| 彭泽县| 霍州市| 龙陵县| 左权县| 龙山县| 象州县| 乌兰县| 射阳县| 夏津县| 平阴县| 思茅市|