找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Mathematical Physics; Lectures given at th M. Cahen,M. Wilde,L. Vanhecke Book 1983 D. Reidel Publishing Company,

[復(fù)制鏈接]
樓主: 故障
31#
發(fā)表于 2025-3-26 23:08:09 | 只看該作者
Variational Theory in Fibre Bundles: Examples. That article of faith has shaped much of our physical and geometric thinking; and any mathematical or physical model of Nature must display prominently its essential features. Indeed, systematic development of such guidelines into sound mathematical theory has -in large measure-led to one of our most powerful tools: ..
32#
發(fā)表于 2025-3-27 05:12:13 | 只看該作者
Curvatures of Tubes about SubmanifoldsLet (M,g) be an n-dimensional Riemannian manifold of class C. and let P be a q-dimensional submanifold of M. A (solid) tube of radius r about P is the set.where T.(P) denotes the normal space of P at the point m. For small r the set.is a smooth hypersurface which we also call a tube.
33#
發(fā)表于 2025-3-27 07:24:56 | 只看該作者
34#
發(fā)表于 2025-3-27 13:19:06 | 只看該作者
35#
發(fā)表于 2025-3-27 15:56:54 | 只看該作者
36#
發(fā)表于 2025-3-27 21:25:40 | 只看該作者
37#
發(fā)表于 2025-3-28 00:03:31 | 只看該作者
https://doi.org/10.1007/978-94-6091-784-4) the space of all locally (resp. globally) hamiltonian vector fields on M, equipped with the Lie bracket. Recall that, if (G,[,]) is a Lie algebra and (F,ρ) a representation of G, the corresponding Chevalley cohomology H(G,ρ) is the cohomology of the complex.where Λ.(G,F) is the space of p-linear a
38#
發(fā)表于 2025-3-28 05:58:34 | 只看該作者
39#
發(fā)表于 2025-3-28 10:10:45 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 枣阳市| 湖南省| 延吉市| 宜州市| 神农架林区| 青铜峡市| 张家口市| 玉屏| 蕲春县| 东宁县| 玉田县| 资溪县| 漳平市| 黔东| 宿松县| 平昌县| 安岳县| 平乐县| 云梦县| 北安市| 玛沁县| 张掖市| 东兴市| 滨海县| 兰州市| 冀州市| 铁岭县| 福建省| 天门市| 华亭县| 娱乐| 霞浦县| 梨树县| 井冈山市| 噶尔县| 灵寿县| 双辽市| 清原| 江城| 交城县|