找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Computational Pers Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: mountebank
11#
發(fā)表于 2025-3-23 09:58:13 | 只看該作者
12#
發(fā)表于 2025-3-23 15:43:29 | 只看該作者
Groups and Group Actionstroduces the concept of a group acting on a set, and defines the Grassmannians and Stiefel manifolds as homogenous manifolds arising from group actions of Lie groups. The last section provides an overview of topological groups, of which Lie groups are a special example, and contains more advanced material that may be skipped upon first reading.
13#
發(fā)表于 2025-3-23 19:41:26 | 只看該作者
Basic Analysis: Review of Series and Derivativesperties of power series involving matrix coefficients and a review of the notion of the . of a function between two normed vector spaces. Those readers familiar with these concepts may proceed directly to Chapter ..
14#
發(fā)表于 2025-3-24 00:54:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:31:31 | 只看該作者
Geodesics on Riemannian Manifolds the structure of a metric space on ., where .(., .) is the greatest lower bound of the length of all curves joining . and .. Curves on . which locally yield the shortest distance between two points are of great interest. These curves, called ., play an important role and the goal of this chapter is to study some of their properties.
16#
發(fā)表于 2025-3-24 07:25:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:37 | 只看該作者
Ratgeber Polyneuropathie und Restless LegsThe purpose of this chapter and the next two chapters is to give a “gentle” and fairly concrete introduction to manifolds, Lie groups, and Lie algebras, our main objects of study.
18#
發(fā)表于 2025-3-24 18:14:51 | 只看該作者
Rating Scales for Somatic Disorders,In this chapter we study a class of linear Lie groups known as the Lorentz groups. As we will see, the Lorentz groups provide interesting examples of homogeneous spaces. Moreover, the Lorentz group .(3, 1) shows up in an interesting way in computer vision.
19#
發(fā)表于 2025-3-24 21:26:59 | 只看該作者
20#
發(fā)表于 2025-3-24 23:44:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙居县| 炉霍县| 洮南市| 双江| 芒康县| 毕节市| 福安市| 札达县| 石棉县| 阳西县| 即墨市| 萝北县| 聂拉木县| 舞钢市| 道真| 贵州省| 平安县| 北宁市| 辉县市| 怀来县| 武平县| 淳化县| 保亭| 拉萨市| 上虞市| 新宾| 辽中县| 嘉鱼县| 台安县| 盐源县| 浦东新区| 白河县| 揭东县| 扎囊县| 奉新县| 平顺县| 平阳县| 新源县| 武清区| 仪征市| 南和县|