找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Complex Analysis; A Volume Dedicated t Isaac Chavel,Hershel M. Farkas Book 1985 Springer-Verlag Berlin, Heidelber

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 07:14:36 | 只看該作者
https://doi.org/10.1007/978-1-137-58929-3In H. F. Baker’s monumental tomb on Abelian varieties [3, p. 273] there is an exercise which must surely catch the eyes of those few readers whose fortitude carries them that far.
22#
發(fā)表于 2025-3-25 08:23:47 | 只看該作者
Rarit?ten und Curiosit?ten der NaturLet . denote the open unit disk in the complex plane ? and . a bounded Jordan domain in ?. We say that . is an ., 0 ≦ . < 1, if one and hence each conformai mapping .: ??.? → ??.? can be extended to a .-quasiconformal mapping of the extended complex plane ?? where . (1 + .)/(1 ? .. A continuum . ? ? is said to be a . if .where . is as above.
23#
發(fā)表于 2025-3-25 11:43:08 | 只看該作者
Malte Schmick,Philippe I. H. BastiaensThis note contains a proof of an elementary but useful inequality for Riemann surfaces with a finitely generated non-Abelian fundamental group.
24#
發(fā)表于 2025-3-25 16:49:21 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:01 | 只看該作者
The Spatial Organization of Ras SignalingA famous theorem of Lusternik and Schnirelmann [LS] states that, for a Riemannian manifold . given by an arbitrary Riemannian metric on the differentiate 2-sphere, there are at least three closed geodesics without self-intersections. See [Ly] for a more complete proof.
26#
發(fā)表于 2025-3-26 01:18:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:22:13 | 只看該作者
Polynomial Approximation in Quasidisks,Let . denote the open unit disk in the complex plane ? and . a bounded Jordan domain in ?. We say that . is an ., 0 ≦ . < 1, if one and hence each conformai mapping .: ??.? → ??.? can be extended to a .-quasiconformal mapping of the extended complex plane ?? where . (1 + .)/(1 ? .. A continuum . ? ? is said to be a . if .where . is as above.
28#
發(fā)表于 2025-3-26 11:45:51 | 只看該作者
An Inequality for Riemann Surfaces,This note contains a proof of an elementary but useful inequality for Riemann surfaces with a finitely generated non-Abelian fundamental group.
29#
發(fā)表于 2025-3-26 15:13:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金塔县| 沙洋县| 苍溪县| 长阳| 晋江市| 岳西县| 区。| 罗平县| 南华县| 建德市| 嘉兴市| 大同县| 青浦区| 石门县| 肇东市| 武胜县| 阿城市| 荣昌县| 恩平市| 邵阳市| 忻城县| 连平县| 赤峰市| 定日县| 曲沃县| 临武县| 泸州市| 商水县| 文昌市| 韶关市| 陇西县| 广元市| 吴堡县| 沙雅县| 金昌市| 丹寨县| 区。| 徐水县| 江津市| 陆丰市| 兰州市|