找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometrical Methods in Theoretical Physics; K. Bleuler,M. Werner Book 1988 Springer Science+Business Media Dordrecht 1988 The

[復(fù)制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 10:38:11 | 只看該作者
The pairing method and bosonic anomaliesdimensional bosonic systems. That is, we explain why, when quantizing quadratic Hamiltonians,onehas to only pass to a .. extension of the symplectic group in the finite dimensional case, which is therefor not visible on the infinitesimal level, whereas in the infinite dimensional case one has to adj
12#
發(fā)表于 2025-3-23 15:15:53 | 只看該作者
A Multisymplectic Approach to the KdV Equationiption of dynamics on the appropriate space of Cauchy data. In addition to allowing one to treat the KdV equation covariantly, this formalism enables one to derive the Gardner symplectic structure for the KdV equation in a completely systematic way.
13#
發(fā)表于 2025-3-23 20:31:48 | 只看該作者
14#
發(fā)表于 2025-3-24 00:21:18 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:32:28 | 只看該作者
Rapid On-site Evaluation (ROSE)ry [1], [7], [8], [9], [10], [11], [12]. This approach gives an important understanding of the action of the Virasoro algebra on the moduli space of surfaces [13], [14] . The space of solutions of the K.P. equation can be described in terms of an infinite dimensional grassmannian .. To any algebraic
17#
發(fā)表于 2025-3-24 11:27:52 | 只看該作者
18#
發(fā)表于 2025-3-24 15:46:20 | 只看該作者
Operator Methods in String Theoryry [1], [7], [8], [9], [10], [11], [12]. This approach gives an important understanding of the action of the Virasoro algebra on the moduli space of surfaces [13], [14] . The space of solutions of the K.P. equation can be described in terms of an infinite dimensional grassmannian .. To any algebraic
19#
發(fā)表于 2025-3-24 20:26:46 | 只看該作者
20#
發(fā)表于 2025-3-24 23:47:05 | 只看該作者
978-90-481-8459-0Springer Science+Business Media Dordrecht 1988
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台前县| 庄浪县| 同江市| 邯郸市| 余庆县| 鄱阳县| 醴陵市| 曲靖市| 乌拉特前旗| 浑源县| 美姑县| 定日县| 嘉峪关市| 三原县| 眉山市| 定结县| 揭阳市| 岳阳市| 衡阳县| 曲沃县| 岐山县| 台安县| 曲松县| 海淀区| 无棣县| 道孚县| 潜山县| 昭觉县| 靖安县| 普陀区| 黔东| 应城市| 射阳县| 获嘉县| 宜州市| 左云县| 吉林市| 平乡县| 保德县| 盐山县| 靖州|