找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Structures and Applications; 4th International Wo Vladimir Rovenski,Pawe? Walczak,Robert Wolak Conference proceeding

[復(fù)制鏈接]
樓主: CAP
41#
發(fā)表于 2025-3-28 17:38:10 | 只看該作者
42#
發(fā)表于 2025-3-28 19:28:24 | 只看該作者
Linda A. Joyce,Nadine A. Marshalle example of coin tosses. We review the basic notions in information geometry, e.g., parametrized measure models, statistics and Fisher quadratic forms. Then we state characterizations of sufficient statistics due to Ay-Jost-Lê-Schwachh?fer and an analogous characterizations of sufficient statistics due to [.].
43#
發(fā)表于 2025-3-28 23:01:04 | 只看該作者
https://doi.org/10.1007/978-3-642-54786-7 replaced with a nonsingular skew-symmetric tensor. We study geometry of a weak .-K-contact structure, which is a weak .-contact structure, whose characteristic vector fields are Killing. We show that the distribution . of a weak .-contact manifold defines a .-foliation with an abelian Lie algebra,
44#
發(fā)表于 2025-3-29 06:23:33 | 只看該作者
How to Conduct a Clinical Trial: Overviewstructure of this kind called a weak .-Kenmotsu structure (that generalizes the notion by K.?Kenmotsu with . and its extension for . by Z.?Olszak). We show that a weak .-Kenmotsu manifold is locally the warped product ., where ., and . is equipped with a parallel skew-symmetric (1,1)-tensor . such t
45#
發(fā)表于 2025-3-29 10:38:32 | 只看該作者
46#
發(fā)表于 2025-3-29 12:05:42 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:38 | 只看該作者
Fritz E. Borgnis,Charles H. Papasrticularly, if all structure constants of the oscillator group are equal to each other, then all unit left-invariant vector fields that define a harmonic map into the unit tangent bundle with Sasaki metric are minimal.
48#
發(fā)表于 2025-3-29 21:00:42 | 只看該作者
Paul J. H. Strong,Victor Squires Manuel Moreira. This extension is particularly considered when leaves are densely packed, and the pseudogroup exhibits strong quasi-analytic behavior. Notably, this extension leads to the establishment of an association with a structural local group within such a foliated space. Application of this
49#
發(fā)表于 2025-3-30 03:22:51 | 只看該作者
50#
發(fā)表于 2025-3-30 08:00:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 黑水县| 浠水县| 黎城县| 广昌县| 海淀区| 都匀市| 敦化市| 石景山区| 天峻县| 平安县| 乃东县| 杨浦区| 沙河市| 遂川县| 玛纳斯县| 平邑县| 托克托县| 青川县| 喀喇沁旗| 蓬莱市| 托里县| 汪清县| 青冈县| 鱼台县| 深水埗区| 会理县| 富锦市| 旺苍县| 新乡市| 会泽县| 阿鲁科尔沁旗| 兴海县| 吴桥县| 平阴县| 夹江县| 清涧县| 嘉黎县| 邵阳市| 什邡市| 金川县|