找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Methods in Theoretical Physics; Proceedings of the 1 C. Bartocci,U. Bruzzo,R. Cianci Conference proceedings 1991 Spr

[復(fù)制鏈接]
樓主: 候選人名單
21#
發(fā)表于 2025-3-25 05:10:03 | 只看該作者
Capture Problems For Coupled Random WalksThis talk reviews the basic definitions of Lie and Poisson groupoids and then proposes Lie Hopf Algebroids as a possible definition for “Quantum Groupoids” — objects which generalize quantum groups on the one hand, and have Poisson groupoids as their classical limits, on the other.
22#
發(fā)表于 2025-3-25 10:06:12 | 只看該作者
Theoretical and Mathematical PhysicsWe analyse the .. affine Toda field theory introduced elsewhere. In particular we study the chiral splitting of the theory and the relevant Drinfeld-Sokolov equations. We exhibit the chiral exchange algebra and the conformal properties of objects involved.
23#
發(fā)表于 2025-3-25 11:58:54 | 只看該作者
Some Limits of the Robustness Paradigm,We give a geometric description of some representations of the semidirect sum of the Virasoro and Kac-Moody algebras in terms of line bundles over the moduli stacks of stable vector bundles over smooth Riemann surfaces.
24#
發(fā)表于 2025-3-25 16:14:13 | 只看該作者
Tensor Operator Structures in Quantum Unitary Groups,Tensor operators acting on model spaces for the quantum group . are defined (“.-tensor operators”) and the fundamental theorem for .-tensor operators (a generalization to non-commutative co-products of the WignerEckart theorem) is proved. Examples from ..(2) are discussed.
25#
發(fā)表于 2025-3-25 20:42:19 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:29 | 只看該作者
From poisson groupoids to quantum groupoids and back,This talk reviews the basic definitions of Lie and Poisson groupoids and then proposes Lie Hopf Algebroids as a possible definition for “Quantum Groupoids” — objects which generalize quantum groups on the one hand, and have Poisson groupoids as their classical limits, on the other.
27#
發(fā)表于 2025-3-26 04:39:46 | 只看該作者
Exchange Algebra in the Conformal Affine ,, Toda Field Theory,We analyse the .. affine Toda field theory introduced elsewhere. In particular we study the chiral splitting of the theory and the relevant Drinfeld-Sokolov equations. We exhibit the chiral exchange algebra and the conformal properties of objects involved.
28#
發(fā)表于 2025-3-26 09:58:34 | 只看該作者
29#
發(fā)表于 2025-3-26 15:06:20 | 只看該作者
Differential Geometric Methods in Theoretical Physics978-3-540-47090-8Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 18:20:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无棣县| 桓仁| 开原市| 海林市| 武定县| 海南省| 平陆县| 隆子县| 高青县| 广灵县| 宜丰县| 加查县| 宜宾市| 定安县| 双辽市| 博湖县| 沙洋县| 逊克县| 和静县| 萝北县| 蓝田县| 建瓯市| 于田县| 茶陵县| 安义县| 甘肃省| 安阳县| 台北县| 泰和县| 德保县| 安国市| 华宁县| 开鲁县| 桂平市| 花莲市| 潞城市| 沈阳市| 汝州市| 维西| 保山市| 贡嘎县|