找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Forms and Applications; Manfredo P. Carmo Textbook 1994 Springer-Verlag Berlin Heidelberg 1994 Diferential forms.Differential

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:52:35 | 只看該作者
Differentiable Manifolds,Differential forms were introduced in the first chapter as objects in .; however, they, as everything else that refers to differentiability, live naturally in a differentiable manifold, a concept that we will develop presently.
12#
發(fā)表于 2025-3-23 14:59:11 | 只看該作者
,Integration on Manifolds; Stokes Theorem and Poincaré’s Lemma,In this section we will define the integral of a differential .-form on an .- dimensional differentiable manifold. We will start with the case of ..
13#
發(fā)表于 2025-3-23 21:33:51 | 只看該作者
Differential Geometry of Surfaces,We now apply our knowledge of differential forms to study some differential geometry. We start with a few definitions.
14#
發(fā)表于 2025-3-23 23:47:57 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:40 | 只看該作者
Differential Forms and Applications978-3-642-57951-6Series ISSN 0172-5939 Series E-ISSN 2191-6675
16#
發(fā)表于 2025-3-24 07:11:12 | 只看該作者
Recep Beki?,Berna Polack,Murat Fani Bozkurtpter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
17#
發(fā)表于 2025-3-24 10:46:07 | 只看該作者
Line Integrals,pter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
18#
發(fā)表于 2025-3-24 15:24:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:44:52 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:37 | 只看該作者
Recep Beki?,Berna Polack,Murat Fani Bozkurtpter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴南区| 南江县| 蓝山县| 邯郸县| 耿马| 禄丰县| 丹凤县| 微博| 金塔县| 民县| 饶平县| 黔西| 栖霞市| 上高县| 堆龙德庆县| 五台县| 罗定市| 时尚| 山西省| 乳山市| 富民县| 广灵县| 馆陶县| 延边| 白山市| 蒲江县| 墨竹工卡县| 宜宾县| 怀仁县| 榆社县| 万荣县| 霍林郭勒市| 荣成市| 乌海市| 瓦房店市| 恩施市| 佛冈县| 南丰县| 阳泉市| 祥云县| 彝良县|