找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations, Chaos and Variational Problems; Vasile Staicu Conference proceedings 2008 Birkh?user Basel 2008 Boundary value pro

[復制鏈接]
樓主: VEER
11#
發(fā)表于 2025-3-23 12:30:29 | 只看該作者
On the Euler-Lagrange Equation for a Variational Problem, with non empty interior. By means of a disintegration theorem, we next show that the Euler-Lagrange equation can be reduced to an ODE along characteristics, and we deduce that the solution to Euler-Lagrange is different from 0 a.e. and satisfies a uniqueness property. Using these results, we prove
12#
發(fā)表于 2025-3-23 14:52:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:20 | 只看該作者
Necessary Conditions in Optimal Control and in the Calculus of Variations,ented and refined over the last thirty years in connection with the nonsmooth analysis approach. Specifically, we present a proof of Theorem 2.1 below, which asserts all the first-order necessary conditions for the basic problem in the calculus of variations, and a proof of Theorem 3.1, which is the
15#
發(fā)表于 2025-3-24 04:01:30 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:54 | 只看該作者
17#
發(fā)表于 2025-3-24 11:23:46 | 只看該作者
On Bounded Trajectories for Some Non-Autonomous Systems,ion and .(±1) = 0. In addition, we consider the existence of a solution to the boundary value problem in the half line . where . ≥ 0 and . is a .., non-negative function, such that . (0) = . (1) = 0. If . = 0 and . and . are even, it turns out that these solutions yield heteroclinics for a special c
18#
發(fā)表于 2025-3-24 18:50:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:37:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:32:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
观塘区| 和政县| 积石山| 北安市| 高唐县| 左权县| 土默特右旗| 博罗县| 大田县| 蓝田县| 青铜峡市| 镇雄县| 中超| 钟祥市| 区。| 兰西县| 贵阳市| 游戏| 灵丘县| 临清市| 平顶山市| 乌鲁木齐县| 衡水市| 喀什市| 宜黄县| 达州市| 大姚县| 永善县| 武山县| 阳泉市| 永丰县| 公安县| 平邑县| 东平县| 论坛| 泰州市| 禹州市| 广南县| 太白县| 濮阳县| 台南县|