找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations with Involutions; Alberto Cabada,F. Adrián F. Tojo Book 2015 Atlantis Press and the author(s) 2015 Differential Equ

[復制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 10:56:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:39 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9itrary differentiable involutions, to the one studied in Chap.?.. As we will see, we will do this in three steps. First we add a term depending on .(.) which does not change much with respect to the previous situations. Then, moving from the reflection to a general involution is fairly simple using
13#
發(fā)表于 2025-3-23 18:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9This chapter is devoted to those results related to differential equations with reflection not directly associated with Green’s functions. The proofs of the results can be found in the bibliography cited for each case. We will not enter into detail with these results, but we summarize their nature for the convenience of the reader.
15#
發(fā)表于 2025-3-24 03:30:16 | 只看該作者
https://doi.org/10.1007/978-3-642-22925-1In this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
16#
發(fā)表于 2025-3-24 07:50:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:32 | 只看該作者
A Cone Approximation to a Problem with ReflectionIn this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
18#
發(fā)表于 2025-3-24 15:23:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
忻城县| 阿鲁科尔沁旗| 沙田区| 明光市| 邓州市| 柯坪县| 历史| 西峡县| 松原市| 康马县| 宜昌市| 莒南县| 巨鹿县| 平江县| 包头市| 儋州市| 金华市| 县级市| 班玛县| 渭源县| 万荣县| 桓台县| 都兰县| 内乡县| 增城市| 高青县| 名山县| 洛川县| 佛冈县| 大兴区| 双城市| 濮阳市| 镇原县| 同心县| 迭部县| 西盟| 黄大仙区| 微博| 方正县| 东港市| 青阳县|