找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Nonlinear Mechanics; K. Vajravelu Book 20011st edition Kluwer Academic Publishers 2001 calculus.differential eq

[復制鏈接]
樓主: 貧血
11#
發(fā)表于 2025-3-23 10:45:33 | 只看該作者
Numerical Solutions of Coupled Parabolic Systems with Time Delays,s discretized by the finite difference method. Using upper and lower solutions as initial iterations, we construct two sequences that converge to a unique solution of the discretized system. The convergence and stability of this numerical scheme are also obtained.
12#
發(fā)表于 2025-3-23 17:14:39 | 只看該作者
Nonlinear Hyperbolic Partial Differential and Volterra Integral Equations: Analytical and Numericalalue problems and Volterra integral equations. Three types of monotone iterative schemes are presented: (i) The Alternating Sequence Scheme; (ii) The Monotone Iterative Scheme; and (iii) The Generalized Quasilinear Scheme. The iterates in all the three shcemes are linear and hence, can be easily com
13#
發(fā)表于 2025-3-23 20:39:00 | 只看該作者
14#
發(fā)表于 2025-3-23 23:11:03 | 只看該作者
Global Behavior of Solutions of a Certain ,th Order Differential Equation in the Vicinity of an Irrle . and the constants .., ....,.. and ..,..,.. (. = 0,1,2,…,. – 2) are complex with .. ≠ 0, .. ≠ 0, .. ≠ 0. We shall also assume that the difference of no two roots of the indicial equation about the regular singular part . = 0 is congruent to zero module ..
15#
發(fā)表于 2025-3-24 05:27:14 | 只看該作者
Book 20011st editioncs. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Aerospace Engineering, and the Office of International Studies (of the University of Central Florida) for the financial support of the conference. Also, to the Mathematics Depart
16#
發(fā)表于 2025-3-24 06:37:55 | 只看該作者
17#
發(fā)表于 2025-3-24 11:05:33 | 只看該作者
https://doi.org/10.1007/978-1-4613-0277-3calculus; differential equation; dynamical systems; fluid; fluid flow; fuzzy sets; material; materials; mech
18#
發(fā)表于 2025-3-24 16:39:40 | 只看該作者
978-1-4613-7974-4Kluwer Academic Publishers 2001
19#
發(fā)表于 2025-3-24 20:10:23 | 只看該作者
Radiation Protection in Nuclear MedicineLet . (. 0), . (. 1), . (. 0) and . (≥ 0) denote constants, . (0, 1), Ω. = . × (0, .], and . and . be the closures of . and Ω. respectively. We consider the following degenerate quasilinear parabolic problem, . where . for some . ∈ (0, 1) is a positive function in . such that ..(0)=0=..(1) and
20#
發(fā)表于 2025-3-24 23:44:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武清区| 和平县| 济源市| 崇礼县| 金坛市| 烟台市| 尚志市| 松阳县| 武功县| 平潭县| 凤阳县| 年辖:市辖区| 府谷县| 和林格尔县| 洛扎县| 凤阳县| 邳州市| 江达县| 兴海县| 晋城| 如东县| 奉节县| 顺平县| 郁南县| 宁明县| 南充市| 高唐县| 青岛市| 于田县| 武穴市| 绍兴市| 囊谦县| 肃南| 博乐市| 齐河县| 连平县| 淮安市| 资阳市| 丹江口市| 太和县| 泰安市|